Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

Like other forms of life, plants contain heme proteins. But in addition to heme proteins such as cytochromes, peroxidases, catalases, oxidases, and oxygenases, some plants contain hemoglobins: heme proteins that appear to function by binding O2 reversibly. The first reports of O2-binding heme proteins in N2-fixing legume root nodules appeared in the late 1930s and the 1940s (Kubo 1939; Keilin and Wang 1945; Virtanen 1945; Little and Burris 1947). Because for many decades the only reproducibly reported plant hemoglobins were found within the specialized symbiotic tissues of N2-fixing legume nodules, plant hemoglobins were named leghemoglobins, as proposed by Virtanen and Laine (1946). The generally used term leghemoglobin is synonymous with the Chemical Abstracts indexing term legoglobin proposed by Bauer and Mortimer (1960), and both terms are abbreviated Lb, first used by Appleby (1962). The name leghemoglobin persists, even though there is now convincing evidence that some nonleguminous plants also contain hemoglobins within their N2-fixing nodules. In this review the term leghemoglobin will refer only to legume hemoglobins. The term hemoglobin, preceded by a genus name, will refer to nonlegume hemoglobins. Standard abbreviations used herein, in addition to Lb, are Hb (hemoglobin) and Mb (myoglobin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appleby CA (1962) The oxygen equilibrium of leghemoglobin. Biochim Biophys Acta 60: 226–235

    PubMed  CAS  Google Scholar 

  • Appleby CA (1969) Properties of leghaemoglobin in vivo, and its isolation as ferrous oxyleghaemoglobin. Biochim Biophys Acta 188: 222–229

    PubMed  CAS  Google Scholar 

  • Appleby CA (1974) Leghemoglobin. In: Quispel A (ed) The biology of nitrogen fixation. North Holland, Amsterdam pp 521–554

    Google Scholar 

  • Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35: 443–478

    CAS  Google Scholar 

  • Appleby CA, Wittenberg BA, Wittenberg JB (1973) Nicotinic acid as a ligand affecting leghemoglobin structure and oxygen reactivity. Proc Natl Acad Sci USA 70: 564–568

    PubMed  CAS  Google Scholar 

  • Appleby CA, Nicola NA, Hurrell JGR, Leach SJ (1975a) Characterization and improved separation of soybean leghemoglobins. Biochemistry 14: 4444–4450

    PubMed  CAS  Google Scholar 

  • Appleby CA, Turner GL, Macnicol PK (1975b) Involvement of oxyleghaemoglobin and cytochrome P-450 in an efficient oxidative phosphorylation pathway which supports nitrogen fixation in Rhizobium. Biochim Biophys Acta 387: 461–474

    PubMed  CAS  Google Scholar 

  • Appleby CA, Blumberg WE, Peisach J, Wittenberg BA, Wittenberg JB (1976) Leghemoglobin. An electron paramagnetic resonance and optical spectral study of the free protein and its complexes with nicotinate and acetate. J Biol Chem 251: 6090–6096

    PubMed  CAS  Google Scholar 

  • Appleby CA, Trewhella J, Wright PE (1982) Differences in the heme environment of soybean leghemoglobin components shown by 1H-nmr spectroscopy. Biochim Biophys Acta 700: 171–177

    CAS  Google Scholar 

  • Appleby CA, Bradbury JH, Morris RJ, Wittenberg BA, Wittenberg JB, Wright PE (1983a) Leghemoglobin. Kinetic, nuclear magnetic resonance, and optical studies of pH dependence of oxygen and carbon monoxide binding. J Biol Chem 258: 2254–2259

    PubMed  CAS  Google Scholar 

  • Appleby CA, Tjepkema JD, Trinick MJ (1983b) Hemoglobin in a nonleguminous plant, Parasponia: possible genetic origin and function in nitrogen fixation. Science 220: 951–953

    PubMed  CAS  Google Scholar 

  • Appleby CA, Bogusz D, Dennis ES, Peacock WJ (1988) A role for haemoglobin in all plant roots? Plant Cell Environ 11: 359–367

    CAS  Google Scholar 

  • Appleby CA, Dennis ES, Peacock WJ (1990) A primaeval origin for plant and animal hemoglobins? Aust Syst Bot 3: 81–89

    Google Scholar 

  • Arutyunyan EG, Kuranova IP, Vainshtein BK, Steigemann WR (1980a) X-ray diffraction analysis of leghemoglobin VI. Structure of acetate-ferrileghemoglobin at the 2.0 Ã… resolution. Kristallografiya 25: 80–103

    CAS  Google Scholar 

  • Arutyunyan EG, Kuranova IP, Tovbis AB, Grebenko AI, Voronova AI, Nekrasov YuV, Vainshtein BK (1980b) X-ray diffraction studies of leghemoglobin VI. Determination of the structure of a complex of ferrileghemoglobin with nicotinic acid at 2.8 Ã… resolution. Kristallografiya 25: 526–534

    CAS  Google Scholar 

  • Arutyunyan EG, Deisenhofer J, Teplyakov AV, Kuranova IP, Obmolova GV, Vainshtein BK (1983) Structural parameters of ligand binding by lupine leghemoglobin at 2.0 Ã… resolution. Dokl Akad Nauk SSSR 270: 732–736

    CAS  Google Scholar 

  • Arutyunyan EG, Safonova TN, Obmolova GV, Teplyakov AV, Popov AN, Rusakov AA, Rubinsky SV, Kuranova IP, Vainshtein BK (1990) Crystal structure of oxyleghemoglobin at 1.7 Ã… resolution. Bioorg Khim 16: 293–302

    CAS  Google Scholar 

  • Atanasov BP, Dimitrova EA, Kudryavtseva NN, Zhiznevskaya GYa, Appleby CA (1989) The proton dependence of nicotinate binding to soybean, kidney bean and lupin ferric leghemoglobins. Biochim Biophys Acta 998: 80–84

    CAS  Google Scholar 

  • Aviram I, Wittenberg BA, Wittenberg JB (1978) The reaction of ferrous leghemoglobin with hydrogen peroxide to form leghemoglobin(IV). J Biol Chem 253: 5685– 5689

    PubMed  CAS  Google Scholar 

  • Avissar YJ, Nadler KD (1978) Stimulation of tetrapyrrole formation in Rhizobium japonicum by restricted aeration. J Bacteriol 135: 782–789

    PubMed  CAS  Google Scholar 

  • Baldwin JM (1980) The structure of human carbonmonoxy haemoglobin at 2.7 Ã… resolution. J Mol Biol 136: 103–128

    PubMed  CAS  Google Scholar 

  • Barlow CH, Ohlsson P-I, Paul K-G (1976) Infrared spectroscopic studies of carbonyl horseradish peroxidases. Biochemistry 15: 2225–2229

    PubMed  CAS  Google Scholar 

  • Bashford D, Chothia C, Lesk AM (1987) Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol 196: 199–216

    PubMed  CAS  Google Scholar 

  • Bauer N (1960) A probable free-radical mechanism for symbiotic nitrogen fixation. Nature (London) 188: 471–473

    CAS  Google Scholar 

  • Bauer N, Mortimer RG (1960) Secondary gasation of heme proteins and biological N2-fixation. Biochim Biophys Acta 40: 170–171

    PubMed  CAS  Google Scholar 

  • Baulcombe D, Verma DPS (1978) Preparation of a complementary DNA for leghaemoglobin and direct demonstration that leghaemoglobin is encoded by the soybean genome. Nucleic Acids Res 5: 4141–4153

    PubMed  CAS  Google Scholar 

  • Berg MH (1965) Variations in porphyrin content in root nodules. J Minn Acad Sci 33: 15–16

    CAS  Google Scholar 

  • Bergersen FJ, Appleby CA (1981) Leghaemoglobin within bacteroid-enclosing membrane envelopes from soybean root nodules. Planta 152: 534–543

    CAS  Google Scholar 

  • Bergersen FJ, Goodchild DJ (1973) Cellular location and concentration of leghemoglobin in soybean root nodules. Aust J Biol Sci 26: 741–756

    CAS  Google Scholar 

  • Bergersen FJ, Turner GL (1967) Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim Biophys Acta 141: 507–515

    PubMed  CAS  Google Scholar 

  • Bergersen FJ, Turner GL (1975) Leghaemoglobin and the supply of O2 to nitrogen-fixing root nodule bacteroids: presence of two oxidase systems and ATP production at low free O2 concentration. J Gen Microbiol 91: 345–354

    PubMed  CAS  Google Scholar 

  • Bergersen FJ, Turner GL, Appleby CA (1973) Studies of the physiological role of leghaemoglobin in soybean root nodules. Biochim Biophys Acta 292: 271–282

    PubMed  CAS  Google Scholar 

  • Bergersen FJ, Turner GL, Gibson AH, Dudman WF (1976) Nitrogenase activity and respiration of cultures of Rhizobium spp. with special reference to concentration of dissolved oxygen. Biochim Biophys Acta 444: 164–174

    PubMed  CAS  Google Scholar 

  • Bergersen FJ, Turner GL, Bogusz D, Wu Y-Q, Appleby CA (1986) Effects of O2 concentrations and various haemoglobins on respiration and nitrogenase activity of bacteroids from stem and root nodules of Sesbania rostrata and of the same bacteria from continuous cultures. J Gen Microbiol 132: 3325–3336

    CAS  Google Scholar 

  • Bogusz D, Kortt AA, Appleby CA (1987) Sesbania rostrata root and stem nodule leghemoglobins: purification and relationships among the seven major components. Arch Biochem Biophys 254: 263–271

    PubMed  CAS  Google Scholar 

  • Bogusz D, Appleby CA, Landsmann J, Dennis ES, Trinick MJ, Peacock WJ (1988) Functioning haemoglobin genes in non-nodulating plants. Nature (London) 331: 178–180

    CAS  Google Scholar 

  • Bojsen K, Abildsten D, Jensen EO, Paludan K, Marcker KA (1983) The chromosomal arrangement of six soybean leghemoglobin genes. EMBO J 2: 1165–1168

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125: 1075–1080

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ, Godfrey CA (1972) Molecular properties of lupin and Serradella leghaemoglobins. Biochem J 127: 309–314

    PubMed  CAS  Google Scholar 

  • Christensen T, Sandal NN, Stougaard J, Marcker KA (1989) 5′-Flanking sequence of the soybean leghemoglobin 1bc3 gene. Nucleic Acids Res 17: 4383

    PubMed  CAS  Google Scholar 

  • Coventry DR, Dilworth MJ (1976) Synthesis and turnover of leghaemoglobin in lupin root nodules. Biochim Biophys Acta 447: 1–10

    PubMed  CAS  Google Scholar 

  • Cutting JA, Schulman HM (1969) The site of heme synthesis in soybean root nodules. Biochim Biophys Acta 192: 486–493

    PubMed  CAS  Google Scholar 

  • Cutting JA, Schulman HM (1971) The biogenesis of leghemoglobin. The determinant in the Rhizobium-legume symbiosis for leghemoglobin specificity. Biochim Biophys Acta 229: 58–62

    PubMed  CAS  Google Scholar 

  • Cutting JA, Schulman HM (1972) The control of heme synthesis in soybean root nodules. Biochim Biophys Acta 261: 321–327

    CAS  Google Scholar 

  • Dalvit C, Tennant L, Wright PE (1986) Proton NMR studies of heme pocket conformation in zinc-substituted leghemoglobin, a diamagnetic analog of deoxyleghemoglobin. J Inorg Biochem 28: 303–309

    PubMed  CAS  Google Scholar 

  • Davenport HE (1960) Haemoglobin in the root nodules of Casuarina cunninghamiana. Nature (London) 186: 653–654

    CAS  Google Scholar 

  • Davidowitz EJ, Dow A, Lang-Unnasch N (1989) Nucleotide sequence of a cDNA clone encoding a leghemoglobin from Medicago sativa. Nucleic Acids Res 17: 3307

    PubMed  CAS  Google Scholar 

  • Deatherage JF, Moffat K (1979) Structure of nitric oxide hemoglobin. J Mol Biol 134: 401–417

    PubMed  CAS  Google Scholar 

  • De Bruijn FJ, Felix G, Grunenberg B, Hoffmann HJ, Metz B, Ratet P, Simons-Schreier A, Szabados L, Welters P, Schell J (1989) Regulation of plant genes specifically induced in nitrogen-fixing nodules: role of cis-acting elements and trans-acting factors in leghemoglobin gene expression. Plant Mol Biol 13: 319–325

    PubMed  Google Scholar 

  • Dilworth MJ (1969) The plant as the genetic determinant of leghaemoglobin production in the legume root nodule. Biochim Biophys Acta 184: 432–441

    PubMed  CAS  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem nodulating nitrogen fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38: 89–98

    CAS  Google Scholar 

  • Egle K, Munding H (1951) Ãœber den Gehalt an Häminkörpern in den Wurzelknöllchen von Nichtleguminosen. Naturwissenschaften 38: 548–549

    CAS  Google Scholar 

  • Egorov TsA, Kazakov VK, Shakhparonov MI, Feigina MYu, Yu M (1980) Amino acid sequence of leghemoglobins I and II from yellow lupine nodules. Bioorg Khim 6: 666–683

    CAS  Google Scholar 

  • Ehrenberg A, Ellfolk N (1963) Crystalline leghemoglobin VII. Magnetic and spectrophotometric properties of leghemoglobin and its derivatives. Acta Chem Scand 17: S343–S347

    CAS  Google Scholar 

  • Ellfolk N (1960a) Crystalline leghemoglobin 1. Purification procedure. Acta Chem Scand 14: 609–616

    CAS  Google Scholar 

  • Ellfolk N (1960b) Crystalline leghemoglobin II. The molecular weights and shapes of the two main components. Acta Chem Scand 14: 1819–1827

    CAS  Google Scholar 

  • Ellfolk N (1961) Crystalline leghemoglobin IV. Spectroscopic studies of the two main metleghemoglobin components and some of their fatty acid complexes. Acta Chem Scand 15: 975–984

    CAS  Google Scholar 

  • Ellfolk N, Sievers G (1965a) Crystalline leghemoglobin VIII. The hemin of the two main components. Acta Chem Scand 19: 268–269

    CAS  Google Scholar 

  • Ellfolk N, Sievers G (1965b) Crystalline leghemoglobin IX. Artificial leghemoglobins Acta Chem Scand 19: 2409–2419

    PubMed  CAS  Google Scholar 

  • Ellfolk N, Sievers G (1967) Crystalline leghemoglobin X. The ferrihemochrome of leghemoglobin. Acta Chem Scand 21: 1457–1461

    PubMed  CAS  Google Scholar 

  • Ellfolk N, Sievers G (1971) The primary structure of soybean leghemoglobin. Acta Chem Scand 25: 3532–3534

    PubMed  CAS  Google Scholar 

  • Ellfolk N, Sievers G (1974) Correction of the amino acid sequence of soybean leghemoglobin a. Acta Chem Scand B28: 1245–1246

    Google Scholar 

  • Ellfolk N, Virtanen AI (1952) The molecular weight of leghemoglobin. Acta Chem Scand 6: 411–420

    CAS  Google Scholar 

  • Ewing GJ, Ionescu LG (1972) The interaction of leghemoglobin with nitrogen and with xenon. J Phys Chem 76: 591–596

    PubMed  CAS  Google Scholar 

  • Fleming AI, Wittenberg JB, Wittenberg BA, Dudman WF, Appleby CA (1987) The purification, characterization and ligand-binding kinetics of hemoglobins from root nodules of the nonleguminous Casuarina glauca-Frankia symbiosis. Biochim Biophys Acta 911: 209–220

    CAS  Google Scholar 

  • Fuchsman WH (1985) Discrepancies among published amino acid sequences of soybean leghemoglobins: experimental evidence against cultivar differences as the sources of the discrepancies. Arch Biochem Biophys 243: 454–460

    PubMed  CAS  Google Scholar 

  • Fuchsman WH, Appleby CA (1979a) Separation and determination of the relative concentrations of the homogeneous components of soybean leghemoglobin by isoelectric focusing. Biochim Biophys Acta 579: 314–324

    PubMed  CAS  Google Scholar 

  • Fuchsman WH, Appleby CA (1979b) CO and O2 complexes of soybean leghemoglobins: pH effects upon infrared and visible spectra. Comparisons with CO and O2 complexes of myoglobin and hemoglobin. Biochemistry 18: 1309–1321

    PubMed  CAS  Google Scholar 

  • Fuchsman WH, Palmer RG (1985) Conservation of leghemoglobin heterogeneity and structures in cultivated and wild soybean. Can J Bot 63: 1951–1956

    CAS  Google Scholar 

  • Fuchsman WH, Barton CR, Stein MM, Thompson JT, Willett RM (1976) Leghemoglobin: different roles for different components? Biochem Biophys Res Commun 68: 387– 392

    PubMed  CAS  Google Scholar 

  • Gibson QH, Wittenberg JB, Wittenberg BA, Bogusz D, Appleby CA (1989) The kinetics of ligand binding to plant hemoglobins. Structural implications. J Biol Chem 264: 100–107

    PubMed  CAS  Google Scholar 

  • Govers F, Gloudemans T, Moerman M, van Kämmen A, Bisseling T (1985) Expression of plant genes during the development of pea root nodules. EMBO J 4: 861–867

    PubMed  CAS  Google Scholar 

  • Graham PH, Parker CA (1961) Leghaemoglobin and symbiotic nitrogen fixation. Aust J Sci 23: 231–232

    CAS  Google Scholar 

  • Guerinot ML, Chelm BK (1986) Bacterial δ-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci USA 83: 1837–1841

    PubMed  CAS  Google Scholar 

  • Hanson JC, Schoenborn BP (1981) Real space refinement of neutron diffraction data from sperm whale carbonmonoxymyoglobin. J Mol Biol 153: 117–146

    PubMed  CAS  Google Scholar 

  • Hattori J, Johnson DA (1985) The detection of leghemoglobin-like sequences in legumes and nonlegumes. Plant Mol Biol 4: 285–292

    CAS  Google Scholar 

  • Henderson RW, Appleby CA (1972) The redox potential of leghaemoglobin. Biochim Biophys Acta 283: 187–191

    PubMed  CAS  Google Scholar 

  • Hunt S, Gaito ST, Layzell DB (1988) Model of gas exchange and diffusion in legume nodules II. Characterisation of the diffusion barrier and estimation of the concentrations of CO2, H2 and N2 in the infected cells. Planta 173: 128–141

    CAS  Google Scholar 

  • Hurrell JGR, Leach SJ (1977) The amino acid sequence of soybean leghaemoglobin c2. FEBS Lett 80: 23–26

    PubMed  CAS  Google Scholar 

  • Hyldig-Nielsen JJ, Jensen EO, Paludan K, Wiborg O, Garrett R, Jorgensen P, Marcker KA (1982) The primary structures of two leghemoglobin genes from soybean. Nucleic Acids Res 10: 689–701

    PubMed  CAS  Google Scholar 

  • Ikeda-Saito M, Hori H, Inubushi T, Yonetani T (1981) Studies on cobalt myoglobins and hemoglobins. The interaction of molecular oxygen with leghemoglobins. J Biol Chem 256: 10267–10271

    PubMed  CAS  Google Scholar 

  • Imamura T, Riggs A, Gibson QH (1972) Equilibria and kinetics of ligand binding by leghemoglobin from soybean root nodules. J Biol Chem 247: 521–526

    PubMed  CAS  Google Scholar 

  • Irwin MJ, Armstrong RS, Wright PE (1981) Resonance raman studies of soybean leghemoglobin and myoglobin. Origin of the differences in O2 dissociation rate constants. FEBS Lett 133: 239–243

    CAS  Google Scholar 

  • Iyer NR (1976) Nodule formation and haemoglobin content in some species of Papilionaceae. Plant Soil 44: 451–454

    CAS  Google Scholar 

  • Jensen EO, Marcker KA, Villadsen IS (1986) Heme regulates the expression in Saccharomyces cerevisiae of chimaeric genes containing 5′-flanking soybean leghemoglobin sequences. EMBO J 5: 843–847

    PubMed  CAS  Google Scholar 

  • Jensen EØ, Marcker KA, Schell J, de Bruijn FJ (1988) Interaction of a nodule specific, trans-acting factor with distinct DNA elements in the soybean leghaemoglobin lbc 3 5′ upstream region. EMBO J 7: 1265–1271

    PubMed  CAS  Google Scholar 

  • Jing Y, Paau AS, Brill WJ (1982) Leghemoglobins from alfalfa (Medicago sativa L. Vernal) root nodules I. Purification and in vitro synthesis of five leghemoglobin components. Plant Sci Lett 25: 119–132

    CAS  Google Scholar 

  • Johnson RN, Bradbury JH, Appleby CA (1978) A proton magnetic resonance study of the distal histidine of soybean leghemoglobin. Effects of nicotinate and other heme ligands. J Biol Chem 253: 2148–2154

    PubMed  CAS  Google Scholar 

  • Jordan DC (1984) Rhizobium. In: Krieg NR, Holt JG (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 235–242

    Google Scholar 

  • Kanayama Y, Yamamoto Y (1990) Inhibition of nitrogen fixation in soybean plants supplied with nitrate II. Accumulation and properties of nitrosylleghemoglobin in nodules. Plant Cell Physiol 31: 207–214

    CAS  Google Scholar 

  • Keilin D, Wang YL (1945) Haemoglobin in the root nodules of leguminous plants. Nature (London) 155: 227–229

    CAS  Google Scholar 

  • Keister DL, Evans WR (1976) Oxygen requirement for acetylene reduction by pure cultures of Rhizobia. J Bacteriol 129: 149–153

    Google Scholar 

  • King BJ, Hunt S, Weagle GE, Walsh KB, Pottier RH, Canvin DT, Layzell DB (1988) Regulation of O2 concentration in soybean nodules observed by in situ spectroscopic measurement of leghemoglobin oxygenation. Plant Physiol 87: 296–299

    PubMed  CAS  Google Scholar 

  • Kiss GB, Végh Z, Vincze É (1987) Nucleotide sequence of a cDNA clone encoding leghemoglobin III (LbIII) from Medicago sativa. Nucleic Acids Res 15: 3620

    PubMed  CAS  Google Scholar 

  • Klucas RV, Lee K-k, Saari L, Erickson BK (1985) Factors affecting functional leghemoglobin in legume nodules. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier, New York, pp 13–19

    Google Scholar 

  • Koch B, Evans HJ, Russell S (1967) Reduction of acetylene and nitrogen gas by breis and cell-free extracts of soybean root nodules. Plant Physiol 42: 466–468

    PubMed  CAS  Google Scholar 

  • Konieczny A (1987) Nucleotide sequence of lupin leghemoglobin I cDNA. Nucleic Acids Res 15: 6742

    PubMed  CAS  Google Scholar 

  • Kortt AA, Burns JE, Trinick MJ, Appleby CA (1985) The amino acid sequence of hemoglobin I from Parasponia andersonii, a nonleguminous plant. FEBS Lett 180: 55–60

    CAS  Google Scholar 

  • Kortt AA, Strike PM, Bogusz D, Appleby CA (1987) The amino acid sequence of leghemoglobin II from Sesbania rostrata stem nodules. Biochem Int 15: 509–516

    CAS  Google Scholar 

  • Kortt AA, Trinick MJ, Appleby CA (1988a) Amino acid sequences of hemoglobins I and II from root nodules of the non-leguminous Parasponia rigida-Rhizobium symbiosis, and a correction of the sequence of hemoglobin I from Parasponia andersonii. Eur J Biochem 175: 141–149

    PubMed  CAS  Google Scholar 

  • Kortt AA, Inglis AS, Fleming AI, Appleby CA (1988b) Amino acid sequence of hemoglobin I from root nodules of the non-leguminous Casuarina glauca-Frankia symbiosis. FEBS Lett 231: 341–346

    CAS  Google Scholar 

  • Kouchi H, Tsukamoto M, Tajima S (1989) Differential expression of nodule-specific (nodulin) genes in the infected, uninfected and cortical cells of soybean (Glycine max) root nodules. J Plant Physiol 135: 608–617

    Google Scholar 

  • Krasnobaeva NN, Atanasov BP (1978) Study of the affinity of lupine leghemoglobin for ligands. Influence of pH and nature of the buffer. Mol Biol 12: 1239–1245

    CAS  Google Scholar 

  • Kubo H (1939) Ãœber das Hämoprotein aus den Wurzelknöllchen von Leguminosen. Acta Phytochim 11: 197–200

    Google Scholar 

  • Landsmann J, Dennis ES, Higgins TJV, Appleby CA, Kortt AA, Peacock WJ (1986) Common evolutionary origin of legume and non-legume plant haemoglobins. Nature (London) 324: 166–168

    CAS  Google Scholar 

  • Landsmann J, Llewellyn D, Dennis ES, Peacock WJ (1988) Organ-related expression of the Parasponia andersonii haemoglobin gene in transgenic tobacco plants. Mol Gen Genet 214: 68–73

    PubMed  CAS  Google Scholar 

  • LaRue TA, Child JJ (1979) Sensitive fluorometric assay for leghemoglobin. Anal Biochem 92: 11–15

    PubMed  CAS  Google Scholar 

  • Lee JS, Verma DPS (1984) Structure and chromosomal arrangement of leghemoglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. EMBO J 3: 2745–2752

    PubMed  CAS  Google Scholar 

  • Lee JS, Brown GG, Verma DPS (1983) Chromosomal arrangement of leghemoglobin genes in soybean. Nucleic Acids Res 11: 5541–5553

    PubMed  CAS  Google Scholar 

  • Lee K-K, Klucas RV (1984) Reduction of ferric leghemoglobin in soybean root nodules. Plant Physiol 74: 984–988

    PubMed  CAS  Google Scholar 

  • Lehtovaara P (1978) Oxidation of glycine by Phaseolus leghaemoglobin with associated catabolic reactions at the heme. Biochem J 176: 351–358

    PubMed  CAS  Google Scholar 

  • Lehtovaara P, Ellfolk N (1974) Primary structure of kidney bean leghemoglobin. FEBS Lett 43: 239–240

    PubMed  CAS  Google Scholar 

  • Lehtovaara P, Ellfolk N (1975) Amino-acid sequence of leghemoglobin component a from Phaseolus vulgaris (kidney bean). Eur J Biochem 54: 577–584

    PubMed  CAS  Google Scholar 

  • Lehtovaara P, Perttilä U (1978) Bile-pigment formation from different leghaemoglobins. Methine-bridge specificity of coupled oxidation. Biochem J 176: 359–364

    PubMed  CAS  Google Scholar 

  • Lehtovaara P, Lappalainen A, Ellfolk N (1980) The amino acid sequence of pea (Pisum sativum) leghemoglobin. Biochim Biophys Acta 623: 98–106

    PubMed  CAS  Google Scholar 

  • Little HN, Burris RH (1947) Activity of the red pigment from leguminous root nodules. J Am Chem Soc 69: 838–841

    PubMed  CAS  Google Scholar 

  • Mabbutt BC, Appleby CA, Wright PE (1983) Nmr studies of oxyleghemoglobin. Assignment of distal histidine proton resonances and evidence for pH-dependent changes in conformation. Biochim Biophys Acta 749: 281–288

    PubMed  CAS  Google Scholar 

  • Marcker A, Lund M, Jensen EØ, Marcker KA (1984) Transcription of the soybean leghemoglobin genes during nodule development. EMBO J 3: 1691–1695

    PubMed  CAS  Google Scholar 

  • Maskall CS, Gibson JF, Dart PJ (1977) Electron-paramagnetic-resonance studies of leghaemoglobins from soya-bean and cowpea root nodules. Identification of nitrosyl—leghaemoglobin in crude leghaemoglobin preparations. Biochem J 167: 435–445

    PubMed  CAS  Google Scholar 

  • Melik-Sarkisyan SS, Raikhinshtein MV, Vladzievskaya LP, Bashirova NF, Kretovich VL (1976a) Effect of legoglobin on respiration and nitrogen-fixation of lupine bacteroids during growth of the plants. Fiziol Rast 23: 274–278

    CAS  Google Scholar 

  • Melik-Sarkisyan SS, Bashirova NF, Zauralova NO, Kretovich VL (1976b) Enzymic reduction of legoglobin. Biokhimiya 41: 1330–1333

    CAS  Google Scholar 

  • Metz BA, Welters P, Hoffmann HJ, Jensen EO, Schell J, de Bruijn FJ (1988) Primary structure and promoter analysis of leghemoglobin genes of the stem-nodulated tropical legume Sesbania rostrata: conserved coding sequences, cis-elements and trans-acting factors. Mol Gen Genet 214: 181–191

    PubMed  CAS  Google Scholar 

  • Mohapatra SS, Pühler A (1986) Detection of nodule-specific polypeptides from effective and ineffective root nodules of Medicago sativa L. J Plant Physiol 126: 269– 281

    CAS  Google Scholar 

  • Monroe JD, Owens TG, LaRue TA (1989) Measurement of the fractional oxygenation of leghemoglobin in intact detached pea nodules by reflectance spectroscopy. Plant Physiol 91: 598–602

    PubMed  CAS  Google Scholar 

  • Mortimer RG, Bauer N (1960) The affinity of legoglobin and other heme proteins for gaseous nitrogen, hydrogen and argon. J Phys Chem 64: 387–390

    CAS  Google Scholar 

  • Narula SS, Dalvit C, Appleby CA, Wright PE (1988) NMR studies of the conformations of leghemoglobins from soybean and lupin. Eur J Biochem 178: 419–435

    PubMed  CAS  Google Scholar 

  • Nash DT, Schulman HM (1976a) Leghemoglobins and nitrogenase activity during soybean root nodule development. Can J Bot 54: 2790–2797

    CAS  Google Scholar 

  • Nash DT, Schulman HM (1976b) The absence of oxidized leghemoglobin in soybean root nodules during nodule development. Biochem Biophys Res Commun 68: 781–785

    PubMed  CAS  Google Scholar 

  • Norris JH, Macol LA, Hirsch AM (1988) Nodulin gene expression in effective alfalfa nodules and in nodules arrested at three different stages of development. Plant Physiol 88: 321–328

    PubMed  CAS  Google Scholar 

  • Obmolova GV, Safonova TN, Teplyakov AV, Popov AN, Kuranova IP, Harutyunyan (Arutyunyan) EG, Vainshtein BK (1988) X-ray structure of ferrous complexes of the yellow lupin leghemoglobin with CO and NO at 1.8 Ã… resolution. Bioorg Khim 14: 1509–1519

    CAS  Google Scholar 

  • O’Brian MR, Kirshbom PM, Maier RJ (1987) Bacterial heme synthesis is required for expression of the leghemoglobin holoprotein but not the apoprotein in soybean root nodules. Proc Natl Acad Sci USA 84: 8390–8393

    PubMed  Google Scholar 

  • Ollis DL, Appleby CA, Colman PM, Cutten AE, Guss JM, Venkatappa MP, Freeman HC (1983) Crystal structure of soybean ferric leghaemoglobin a nicotinate at a resolution of 3.3 Ã…. Aust J Chem 36: 451–468

    CAS  Google Scholar 

  • Pfeiffer NE, Malik NSA, Wagner FW (1983a) Reversible dark-induced senescence of soybean root nodules. Plant Physiol 71: 393–399

    PubMed  CAS  Google Scholar 

  • Pfeiffer NE, Torres CM, Wagner FW (1983b) Proteolytic activity in soybean root nodules. Activity in host cell cytosol and bacteroids throughout physiological development and senescence. Plant Physiol 71: 797–802

    PubMed  CAS  Google Scholar 

  • Phillips SEV (1980) Structure and refinement of oxymyoglobin at 1.6 Ã… resolution. J Mol Biol 142: 531–554

    PubMed  CAS  Google Scholar 

  • Pladys D, Rigaud J (1985) Senescence in French-bean nodules: occurrence of different proteolytic activities. Physiol Plant 63: 43–48

    CAS  Google Scholar 

  • Pladys D, Barthe P, Rigaud J (1988) Changes in intracellular pH in French-bean nodules induced by senescence and nitrate treatment. Plant Sci 56: 99–106

    CAS  Google Scholar 

  • Powers L, Sessler JL, Woolery GL, Chance B (1984) CO bond angle changes in photolysis of carboxymyoglobin. Biochemistry 23: 5519–5523

    PubMed  CAS  Google Scholar 

  • Proctor MH (1963) A note on haemoglobin estimation. N Z J Sci 6: 60–63

    CAS  Google Scholar 

  • Puppo A, Halliwell B (1988) Generation of hydroxyl radicals by soybean nodule leghaemoglobin. Planta 173: 405–410

    CAS  Google Scholar 

  • Puppo A, Rigaud J (1975) Indole-3-acetic acid (IAA) oxidation by leghemoglobin from soybean nodules. Physiol Plant 35: 181–185

    CAS  Google Scholar 

  • Puppo A, Rigaud J, Job D (1981) Role of superoxide anion in leghemoglobin autoxidation. Plant Sci Lett 22: 353–360

    CAS  Google Scholar 

  • Puppo A, Dimitrijevic L, Rigaud J (1982) Possible involvement of nodule superoxide dismutase and catalase in leghemoglobin protection. Planta 156: 374–379

    CAS  Google Scholar 

  • Puppo A, Rigaud J, Job D (1980) Leghemoglobin reduction by a nodule reductase. Plant Sci Lett 20: 1–6

    CAS  Google Scholar 

  • Putnoky P, Grosskopf E, Cam Ha DT, Kiss GB, Kondorosi A (1988) Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J Cell Biol 106: 597–607

    PubMed  CAS  Google Scholar 

  • Richardson M, Dilworth MJ, Scawen MD (1975) The amino acid sequence of leghaemoglobin I from root nodules of broad bean (Vicia faba L.). FEBS Lett 51: 33–37

    PubMed  CAS  Google Scholar 

  • Rigaud J, Puppo A (1977) Effect of nitrite upon leghemoglobin and interaction with nitrogen fixation. Biochim Biophys Acta 497: 702–706

    PubMed  CAS  Google Scholar 

  • Roberts MP, Jafar S, Mullin BC (1985) Leghemoglobin-like sequences in the DNA of four actinorhizal plants. Plant Mol Biol 5: 333–337

    CAS  Google Scholar 

  • Robertson JG, Wells B, Bisseling T, Farnden KJF, Johnston AWB (1984) Immuno-gold localization of leghaemoglobin in cytoplasm in nitrogen-fixing root nodules of pea. Nature (London) 311: 254–256

    CAS  Google Scholar 

  • Saari LL, Klucas RV (1984) Ferric leghemoglobin reductase from soybean root nodules. Arch Biochem Biophys 231: 102–113

    PubMed  CAS  Google Scholar 

  • Saari LL, Klucas RV (1987) Nonenzymatic reduction of ferric leghemoglobin. Biochim Biophys Acta 912: 198–202

    PubMed  CAS  Google Scholar 

  • Saari LL, Martin KD, Guang-Xin W, Wang T, Parkhurst LJ, Klucas RV (1988) Oxygen, carbon monoxide, and azide binding to the eight components of soybean leghemoglobin. In: Bothe H, de Bruijn FJ, Newton WE (ed) Nitrogen fixation: hundred years after. Fischer, Stuttgart, p 642

    Google Scholar 

  • Schiffmann J, Löbel R. (1970) Haemoglobin determination and its value as an early indication of peanut Rhizobium efficiency. Plant Soil 33: 501–512

    CAS  Google Scholar 

  • Sheehy JE, Bergersen FJ (1986) A simulation study of the functional requirements and distribution of leghaemoglobin in relation to biological nitrogen fixation in legume root nodules. Ann Bot 58: 121–136

    CAS  Google Scholar 

  • Sidloi-Lumbroso R, Kleiman L, Schulman HM (1978) Biochemical evidence that leghaemoglobin genes are present in the soybean but not in Rhizobium genome. Nature (London) 273: 558–560

    CAS  Google Scholar 

  • Sievers G, Rönnberg M (1978) Study of the pseudoperoxidatic activity of soybean leghemoglobin and sperm whale myoglobin. Biochim Biophys Acta 533: 293–301

    PubMed  CAS  Google Scholar 

  • Sievers G, Huhtala M-L, Ellfolk N (1977) The amino acid sequence of soybean (Glycine max) leghemoglobin c. Acta Chem Scand B31: 723–724

    CAS  Google Scholar 

  • Sievers G, Huhtala M-L, Ellfolk N (1978) The primary structure of soybean (Glycine max) leghemoglobin c. Acta Chem Scand B32: 380–386

    CAS  Google Scholar 

  • Smith JD (1949a) The concentration and distribution of haemoglobin in the root nodules of leguminous plants. Biochem J 44: 585–591

    CAS  Google Scholar 

  • Smith JD (1949b) Haemoglobin and the oxygen uptake of leguminous root nodules. Biochem J 44: 591–598

    CAS  Google Scholar 

  • Stanley J, Longtin D, Madrzak C, Verma DPS (1986) Genetic locus in Rhizobium japonicum (fredii) affecting soybean root nodule differentiation. J Bacteriol 166: 628–634

    PubMed  CAS  Google Scholar 

  • Sternberg H, Virtanen AI (1952) Studies on the absorption spectrum of leghemoglobin, especially of leghemiglobin. Acta Chem Scand 6: 1342–1352

    CAS  Google Scholar 

  • Stougaard J, Petersen TE, Marcker KA (1987) Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus. Proc Natl Acad Sci USA 84: 5754–5757

    PubMed  CAS  Google Scholar 

  • Stougaard J, Jørgensen J-E, Christensen T, Kühle A, Marcker KA (1990) Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters. Mol Gen Genet 220: 353–360

    PubMed  CAS  Google Scholar 

  • Stripf R, Werner D (1978) Differentiation of Rhizobium japonicum II. Enzymic activities in bacteroids and plant cytoplasm during the development of nodules of Glycine max. Z Naturforsch 33C: 373–381

    CAS  Google Scholar 

  • Strittmatter G, Chia T-F, Trinh TH, Katagiri F, Kuhlemeier C, Chua N-H (1989) Characterization of nodule-specific cDNA clones from Sesbania rostrata and expression of the corresponding genes during the initial stages of stem nodules and root nodules formation. Mol Plant-Microb Interactions 2: 122–127

    CAS  Google Scholar 

  • Suzuki T, Nishidai S, Furukohri T (1988) Re-examination of the amino acid sequence of soybean leghemoglobin a and autoxidation of its oxy-form. Int J Biochem 20: 35–40

    CAS  Google Scholar 

  • Szybiak-Strozycka U, Strozycka P, Sikorski M, Golinska B, Madrzak C, Legocki AB (1987) Lupine leghemoglobins during root nodule development. Acta Biochim Pol 34: 79–85

    PubMed  CAS  Google Scholar 

  • Thorogood E (1957) Oxygenated ferroheme proteins from soybean nodules. Science 126: 1011–1012

    PubMed  CAS  Google Scholar 

  • Tjepkema JD (1983) Hemoglobin in the nitrogen-fixing root nodules of actinorhizal plants. Can J Bot 61: 2924–2929

    CAS  Google Scholar 

  • Tjepkema JD, Asa DJ (1987) Total and CO-reactive heme content of actinorhizal nodules and the roots of some non-nodulated plants. Plant Soil 100: 225–236

    CAS  Google Scholar 

  • Tjepkema JD, Cartica RJ (1982) Diffusion limitation of oxygen uptake and nitrogenase activity in the root nodules of Parasponia rigida Merr. and Perry. Plant Physiol 69: 728–733

    PubMed  CAS  Google Scholar 

  • Tjepkema JD, Yocum CS (1973) Respiration and oxygen transport in soybean nodules. Planta 115: 59–72

    CAS  Google Scholar 

  • Tjepkema JD, Yocum CS (1974) Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta 119: 351–360

    Google Scholar 

  • Trewhella J, Wright PE (1980) 1H-nmr studies of ferric soybean leghemoglobin. Assignment of hyperfine shifted resonances of complexes with cyanide, nicotinate, pyridine and azide. Biochim Biophys Acta 625: 202–220

    PubMed  CAS  Google Scholar 

  • Trewhella J, Wright PE, Appleby CA (1979) Spin state equilibria in soybean ferric leghemoglobin and its complexes with formate and acetate. Biochem Biophys Res Commun 88: 713–721

    PubMed  CAS  Google Scholar 

  • Uheda E, Syono K (1982a) Effects of leghaemoglobin components on nitrogen fixation and oxygen consumption. Plant Cell Physiol 23: 85–90

    CAS  Google Scholar 

  • Uheda E, Syono K (1982b) Physiological role of leghaemoglobin heterogeneity in pea root nodule development. Plant Cell Physiol 23: 75–84

    CAS  Google Scholar 

  • Uheda E, Syono K (1984) Leghaemoglobin biosynthesis in a new single cell system from soybean root nodules. Physiol Plant 61: 337–343

    CAS  Google Scholar 

  • Vainshtein BK, Harutyunyan EH, Kuranova IP, Borisov VV, Sosfenov NI, Pavlovsky AG, Grebenko AI, Konareva NV (1975) Structure of leghaemoglobin from lupin root nodules at 5 Ã… resolution. Nature (London) 254: 163–164

    CAS  Google Scholar 

  • Vainshtein BK, Kuranova IP, Arutyunyan EG, Egorov TsA (1980) Leghemoglobin II from yellow lupine. Characteristics of its structure in comparison to sperm whale myoglobin. Bioorg Khim 6: 684–699

    CAS  Google Scholar 

  • VandenBosch KA, Newcomb EH (1988) The occurrence of leghemoglobin protein in the uninfected interstitial cells of soybean root nodules. Planta 175: 442–451

    CAS  Google Scholar 

  • Verma DPS, Bal AK (1976) Intracellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sci USA 73: 3843–3847

    PubMed  CAS  Google Scholar 

  • Verma DPS, Ball S, Guérin C, Wanamaker L (1979) Leghemoglobin biosynthesis in soybean root nodules. Characterization of the nascent and released peptides and the relative rate of synthesis of the major leghemoglobins. Biochemistry 18: 476–483

    PubMed  CAS  Google Scholar 

  • Virtanen AI (1945) Symbiotic nitrogen fixation. Nature (London) 155: 747–748

    Google Scholar 

  • Virtanen AI (1947) The biology and chemistry of nitrogen fixation by legume bacteria. Biol Rev 22: 239–269

    PubMed  CAS  Google Scholar 

  • Virtanen AI, Laine T (1946) Red, brown and green pigments in leguminous root nodules. Nature (London) 157: 25–26

    CAS  Google Scholar 

  • Virtanen AI, Miettinen JK (1949) Formation of biliverdin from legcholeglobin, the green pigment in leguminous root nodules. Acta Chem Scand 3: 17–21

    PubMed  CAS  Google Scholar 

  • Virtanen AI, Jorma J, Linkola H, Linnasalmi A (1947a) On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. Acta Chem Scand 1: 90–111

    PubMed  CAS  Google Scholar 

  • Virtanen AI, Erkama J, Linkola H (1947b) On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules II. Acta Chem Scand 1: 861–870

    PubMed  CAS  Google Scholar 

  • Vivo A, Andreu JM, de la Vina S, de Felipe MR (1989) Leghemoglobin in lupin plants (Lupinus albus cv. Multolupa). Plant Physiol 90: 452–457

    PubMed  CAS  Google Scholar 

  • Welters P, Metz BA, Schell J, de Bruijn FJ (1989) Nucleotide sequence of the Sesbania rostrata leghemoglobin (Srglb3) gene. Nucleic Acids Res 17: 1253

    PubMed  CAS  Google Scholar 

  • Whittaker RG, Lennox S, Appleby CA (1981) Relationship of the minor soybean leghemoglobins d 1, d 2 and d 3 to the major leghemoglobins c1, c2 and c3. Biochem Int 3: 117–124

    Google Scholar 

  • Whittaker RG, Moss BA, Appleby CA (1979) Determination of the blocked N-terminal of soybean leghemoglobin b. Biochem Biophys Res Commun 89: 552–558

    PubMed  CAS  Google Scholar 

  • Wiborg O, Hyldig-Nielsen JJ, Jensen EØ, Paludan K, Marcker KA (1982) The nucleotide sequences of two leghemoglobin genes from soybean. Nucleic Acids Res 10: 3487– 3494

    PubMed  CAS  Google Scholar 

  • Wiborg O, Hyldig-Nielsen JJ, Jensen EØ, Paludan K, Marcker KA (1983) The structure of an unusual leghemoglobin gene from soybean. EMBO J 2: 449–452

    PubMed  CAS  Google Scholar 

  • Wittenberg BA, Wittenberg JB, Appleby CA (1973) Leghemoglobin I. Changes in conformation and chemical reactivity linked to reaction with acetic acid. J Biol Chem 248: 3178–3182

    PubMed  CAS  Google Scholar 

  • Wittenberg JB (1966) The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem 241: 104–114

    PubMed  CAS  Google Scholar 

  • Wittenberg JB (1980) Utilization of leghemoglobin-bound oxygen by Rhizobium bacteroids. In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation, vol II. University Park Press, Baltimore, pp 53–67

    Google Scholar 

  • Wittenberg JB, Appleby CA, Wittenberg BA (1972) The kinetics of the reactions of leghemoglobin with oxygen and carbon monoxide. J Biol Chem 247: 527–531

    PubMed  CAS  Google Scholar 

  • Wittenberg JB, Bergersen FJ, Appleby CA, Turner GL (1974) Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J Biol Chem 249: 4057–4066

    PubMed  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA, Gibson QH, Trinick MJ, Appleby CA (1986) The kinetics of the reactions of Parasponia andersonii hemoglobin with oxygen, carbon monoxide, and nitric oxide. J Biol Chem 261: 13624–13631

    PubMed  CAS  Google Scholar 

  • Wright PE, Appleby CA (1977) High resolution NMR studies of soybean leghemoglobin a. FEBS Lett 78: 61–66

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchsman, W.H. (1992). Plant Hemoglobins. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics