Molecular Structure of the Arthropod Hemocyanins

  • J. Markl
  • H. Decker
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 13)

Abstract

Hemocyanin is an extracellular, blue protein that occurs in high concentrations in the blood of many arthropods, including spiders, scorpions, horseshoe crabs, crustaceans, and at least two centipedes. Serving as an ### oxygen carrier, it is functionally equivalent to hemoglobin, but performs reversible oxygen binding between two copper ions. Hemocyanin is composed of a number of subunits that assemble in an extremely large macro-molecular entity. These particles, which are similar in size to viruses or ribosomes, exhibit a complex allosteric behavior during oxygen binding. There is growing evidence that this functional plasticity has evolved upon, and answers to, ecophysiological constraints. Arthropod hemocyanins are cubical molecules which, in the electron microscope, differ largely from the cylindrical particles found in mollusks (Fig. 1). Molluscan hemocyanins are decamers, didecamers, or multidecamers of polypeptides of Mr up to 450000 that carry up to eight binuclear copper sites. In contrast, arthropod hemocyanins are hexamers (1 × 6) or oligohexamers (n × 6) of polypeptides of Mr 75000, each containing only a single such copper site (Fig. 2). For earlier reviews, see e.g. Kobert (1903), Quagliariello (1923), Redfield (1934), Ghiretti (1962), Van Holde and Van Bruggen (1971), Bonaventura et al. (1977), Wood (1980), Van Holde and Miller (1982), Ellerton et al. (1983), Brunori et al. (1985), and Markl (1986).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal OP, Scheller K (1990) Sclerotization of insect cuticle in a cell free system. Z Naturforsch 45C: 129–131Google Scholar
  2. Alliel PM, Dautigny A, Lamy J, Lamy J-N, Jolies P (1983) Cell-free synthesis of hemocyanin from the scorpion Androctonus australis. Characterization of the translation products by monospecific antisera. Eur J Biochem 134: 407–414PubMedCrossRefGoogle Scholar
  3. Arisaka F, van Holde KE (1979) Allosteric properties and the association equilibria of hemocyanin from Callianassa californiensis. J Mol Biol 134: 41–73PubMedCrossRefGoogle Scholar
  4. Bak HJ, Beintema JJ (1987) Panulirus interruptus hemocyanin. The elucidation of the complete amino acid sequence of subunit a. Eur J Biochem 169: 333–348PubMedCrossRefGoogle Scholar
  5. Bak HJ, Neuteboom B, Jekel PA, Soeter NM, Vereijken JM, Beintema JJ (1986) Structure of arthropod hemocyanin. FEBS Lett 204: 141–144CrossRefGoogle Scholar
  6. Bellelli A, Giardina B, Corda M, Pellegrini MG, Cau A, Condo SG, Brunori M (1988) Sexual and seasonal variability of lobster hemocyanin. Comp Biochem Physiol 91A: 445–449CrossRefGoogle Scholar
  7. Beltramini M, Santamaria M, Salvato B (1988) Effects of anions calcium magnesium and aliphatic alcohols on the reaction of hemocyanin with cyanide. Arch Biochem Biophys 262: 149–158PubMedCrossRefGoogle Scholar
  8. Bernhard H, Pilz I, Meisenberger O, Witters R, Lontie R (1983) A small angle X-ray scattering study of the quaternary structure of the 24S component of the hemocyanins of Homarus vulgaris and Cancer pagurus. Biochim Biophys Acta 748: 28–33CrossRefGoogle Scholar
  9. Bijlholt MMC (1986) Electron microscopic studies of the quaternary structure of arthropod hemocyanins. Thesis, Rijksuniversiteit Groningen, NetherlandsGoogle Scholar
  10. Bijlholt MMC, Van Bruggen EFJ (1986) A model of the architecture of the hemocyanin from the arthropod Squilla mantis (Crustacea, Stomatopoda). Eur J Biochem 155: 339–344PubMedCrossRefGoogle Scholar
  11. Bijlholt MMC, Van Bruggen EFJ, Bonaventura J (1979) Dissociation and reassembly of Limulus polyphemus hemocyanin. Eur J Biochem 95: 399–405PubMedCrossRefGoogle Scholar
  12. Bijlholt MMC, Van Heel MC, Van Bruggen EFJ (1982) Comparison of the 4 x 6-meric hemocyanins from three different arthropods using computer alignment and correspondence analysis. J Mol Biol 161: 139–153PubMedCrossRefGoogle Scholar
  13. Billiald P, Lamy J, Taveau JC, Motta G, Lamy J (1988) Mapping of six epitopes on haemocyanin subunit Aa6 by immunoelectron microscopy. Eur J Biochem 175: 423– 431PubMedCrossRefGoogle Scholar
  14. Billiald P, Lamy JN, Motta G, Goyffon M (1989) Cross-reactivity of a monoclonal antibody to the haemocyanin of various scorpion species. Comp Biochem Physiol 93B: 67–71Google Scholar
  15. Blest AD, Price DG (1981) A new mechanism of transitory, local endocytosis in photoreceptors of a spider, Dinopis. Cell Tissue Res 217: 267–282PubMedCrossRefGoogle Scholar
  16. Boisset N, Frank J, Taveau JC, Billiald P, Motta G, Lamy J, Sizaret PY, Lamy J (1988) Intramolecular localization of epitopes within an oligomeric protein by immunoelectron microscopy and image processing. Proteins 3: 161–183PubMedCrossRefGoogle Scholar
  17. Boisset N, Taveau J-C, Lamy J-N (1990) An approach to the architecture of Scutigera coeloptrata hemocyanin by electron microscopy and image processing. Biol Cell 86: 73–84CrossRefGoogle Scholar
  18. Bonaventura J, Bonaventura C, Sullivan B (1977) Non-heme oxygen transport proteins. In: Jöbis F (ed) Oxygen and physiological function. Prof Inf Libr, Dallas, pp 177–220Google Scholar
  19. Brenowitz M, Bonaventura C, Bonaventura J, Gianazza E (1981) Subunit composition of a high molecular weight oligomer: Limulus polyphemus hemocyanin. Arch Biochem Biophys 210: 748–761PubMedCrossRefGoogle Scholar
  20. Brenowitz M, Bonaventura C, Bonaventura J (1983) Assembly and calcium-induced cooperativity of Limulus IV hemocyanin: a model system for analysis of structure-function relationships in the absence of subunit heterogeneity. Biochemistry 22: 4707–4713PubMedCrossRefGoogle Scholar
  21. Brenowitz M, Bonaventura C, Bonaventura J (1984a) Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin. Arch Biochem Biophys 230: 238–249PubMedCrossRefGoogle Scholar
  22. Brenowitz M, Bonaventura C, Bonaventura J (1984b) Comparison of the functional properties of the 48-subunit native molecule and the 24- and 12-subunit dissociation intermediates of Limulus polyphemus hemocyanin. Biochemistry 23: 879–888CrossRefGoogle Scholar
  23. Briggs DEG, Fortey RA (1989) The early radiation and relationship of the major arthropod groups. Science 246: 241–243PubMedCrossRefGoogle Scholar
  24. Brouwer M, Serigstad B (1989) Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers. Biochemistry 28: 8819–8827PubMedCrossRefGoogle Scholar
  25. Brouwer M, Bonaventura C, Bonaventura J (1978) Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp, Penaeus setiferus. Biochemistry 17: 2148–2154PubMedCrossRefGoogle Scholar
  26. Brouwer M, Bonaventura C, Bonaventura J (1981) Effect of oxygen and allosteric effectors on structural stability of oligomeric hemocyanins of the arthropod, Limulus polyphemus, and the mollusc, Helix pomatia. Biochemistry 20: 1842–1848PubMedCrossRefGoogle Scholar
  27. Brouwer M, Bonaventura C, Bonaventura J (1983) Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Biochemistry 22: 4713–4723PubMedCrossRefGoogle Scholar
  28. Brouwer M, Whaling P, Engel DW (1986) Copper-metallothioneins in the American lobster, Homarus americanus: potential role as Cu(I) donors to apohaemocyanin. Environ Health Perspect 65: 93–100PubMedGoogle Scholar
  29. Brown JM, Powers L, Kincaid B, Larrabee JA, Spiro TG (1980) Structural studies of the hemocyanin active site. I. Extended X-ray absorption fine-structure (EXAFS) analysis. J Am Chem Soc 102: 4210–4216CrossRefGoogle Scholar
  30. Brunori M, Coletta M, Giardina B (1985) Oxygen carrier proteins. In: Harrison P (ed) Metallo proteins, vol II. MacMillan, London, pp 263–331Google Scholar
  31. Brunori M, Coletta M, Di Cera E (1986) A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. Biophys Chem 23: 215–222PubMedCrossRefGoogle Scholar
  32. Busselen P (1970) The electrophoretic heterogeneity of Carcinus maenas hemocyanin. Arch Biochem Biophys 137: 415–420PubMedCrossRefGoogle Scholar
  33. Cavellec A, Boisset N, Taveau J-C, Lamy JN (1990) Image processing of electron- microscopic views of Callianassa californiensis hemocyanin. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 271–274Google Scholar
  34. Cisne JJ (1974) Trilobites and the origin of arthropods. Science 186: 13–18PubMedCrossRefGoogle Scholar
  35. Connelly PR, Johnson CR, Robert CH, Bak HJ, Gill SJ (1989) Binding of oxygen and carbon monoxide to the hemocyanin from the spiny lobster. J Mol Biol 207: 829–832PubMedCrossRefGoogle Scholar
  36. Craik CS, Sprang S, Fletterick R, Rutter WJ (1982) Intron-exon splice junctions map at protein surfaces. Nature (London) 299: 180–182CrossRefGoogle Scholar
  37. Debeire P, Montreuil J, Goyffon M, Van Kuik AJ, Van Halbeek H, Vliegenthart JFG (1986) Primary structure of the oligosaccharide moiety of hemocyanin from the scorpion Androctonus australis. Carbohydr Res 151: 305–310CrossRefGoogle Scholar
  38. De Bethune B, Cleuter Y, Marbaix G, Preaux G (1985) Site of biosynthesis of the haemocyanin in the crayfish Astacus leptodactylus. Arch Int Physiol Biochim 93: B75CrossRefGoogle Scholar
  39. Decker H (1990) Nested allostery in scorpion hemocyanin, Pandinus imperator. Biophys Chem 37: 257–263PubMedCrossRefGoogle Scholar
  40. Decker H, Sterner R (1990) Nested allostery of arthropodan hemocyanin (Eurypelma californicum and Homarus americanus): the role of the protons. J Mol Biol 211: 281–293PubMedCrossRefGoogle Scholar
  41. Decker H, Markl J, Loewe R, Linzen B (1979) Hemocyanins in spiders. VIII. Oxygen affinity of the individual subunits isolated from Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 360: 1505–1507PubMedGoogle Scholar
  42. Decker H, Schmid R, Markl J, Linzen B (1980) Hemocyanins in spiders. XII. Dissociation and reassociation of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 361: 1707–1717PubMedCrossRefGoogle Scholar
  43. Decker H, Savel A, Linzen B, Van Holde KE (1983) A new graphical test for the MWC-model and its application to some hemocyanins. In: Wood EJ (ed) Structure and function in invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 251–256Google Scholar
  44. Decker H, Robert CH, Gill SJ (1986) Nesting - an extension of the allosteric model and its application to tarantula hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 383–388Google Scholar
  45. Decker H, Connelly P, Robert CH, Gill SJ (1988) Nested allosteric interaction in tarantula hemocyanin revealed through the binding of oxygen and carbon monoxide. Biochemistry 27: 6901–6908PubMedCrossRefGoogle Scholar
  46. Decker H, Savel-Niemann A, Körschenhausen D, Eckerskorn E, Markl J (1989) Allosteric oxygen-binding properties of reassembled tarantula (Eurypelma californicum) hemocyanin with incorporated apo- or met-subunits. Biol Chem HS 370: 511–523Google Scholar
  47. DeFur PL, Mangum CP, Reese JE (1990) Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biol Bull 178: 46–54CrossRefGoogle Scholar
  48. DeHaas F, van Breemen JFL, Bijlholt MMC, van Bruggen EFJ (1990) Comparison of two-hexameric hemocyanin structures from Chelicerata and Crustacea at sub-domain resolution. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 285–288Google Scholar
  49. Depledge MN, Bjerregaard P (1989) Haemolymph protein composition and copper levels in decapod crustaceans. Helgol Wiss Meeresunters 43: 207–223CrossRefGoogle Scholar
  50. Drexel R, Takagi T, Linzen B (1986) Sequence homologies of Paroctopus dofleini and Helix pomatia hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 263–264Google Scholar
  51. Drexel R, Siegmund S, Schneider H-J, Linzen B, Gielens C, Preaux G, Lontie R, Kellermann J, Lottspeich F (1987) Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biol Chem HS 368: 617–635Google Scholar
  52. Ellerton HD, Ellerton NF, Robinson HA (1983) Hemocyanin - a current perspective. Proc Biophys Mol Biol 41: 143–248CrossRefGoogle Scholar
  53. Eyerie F, Schartau W (1985) Hemocyanins in spiders. XX. Sulfydryl groups and disulfide bridges in subunit d of Eurypelma californicum hemocyanin. Biol Chem HS 366: 403–409Google Scholar
  54. Fahrenbach WH (1970) The cyanoblast: hemocyanin formation in Limulus polyphemus. J Cell Biol 44: 445–453PubMedCrossRefGoogle Scholar
  55. Folkerts A, Van Eerd JP (1981) Immunological relatedness of five hemocyanin subunits from the spiny lobster Panulirus interruptus. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Dekker, New York, pp 215–225Google Scholar
  56. Franz V (1904) Über die Struktur des Herzens und die Entstehung von Blutzellen bei Spinnen. Zool Anz 27: 192–204Google Scholar
  57. Frieden E (1981) The evolution of copper proteins. In: Siegel H (ed) Metal ions in biological systems, vol 13. Copper proteins. Dekker, New York, pp 1–14Google Scholar
  58. Fujii T, Sakurai H, Izumi S, Tomino S (1989) Structure of the gene for the arylphorin- type storage protein SP2 of Bombyx mori. J Biol Chem 264: 11020–11025PubMedGoogle Scholar
  59. Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintema JJ (1984) 3.2 Å Structure of the copper-containing, oxygen-carrying protein Panulirus interruptus hemocyanin. Nature (London) 309: 23–29CrossRefGoogle Scholar
  60. Gaykema WPJ, Volbeda A, Hol WGJ (1985) Structure determination of Panulirus interruptus haemocyanin at 3.2 Å resolution. Successful phase extension by sixfold density averaging. J Mol Biol 187: 255–275CrossRefGoogle Scholar
  61. Ghidalia W (1985) Structural and biological aspects of pigments. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, vol 9. Academic Press, London, pp 301–394Google Scholar
  62. Ghiretti F (1962) Hemerythrin and hemocyanin. In: Hayaishi O (ed) Oxygenases. Academic Press, London, pp 517–553Google Scholar
  63. Ghiretti-Magaldi A, Milanesi C, Salvato B (1973) Identification of hemocyanin in the cyanocytes of Carcinus maenas. Experientia 29: 1265–1267PubMedCrossRefGoogle Scholar
  64. Ghiretti-Magaldi A, Milanesi C, Tognon G (1977) Hemopoiesis in Crustacea Decapoda: origin and evolution of hemocytes and cyanocytes of Carcinus maenas. Cell Differ 6: 167–186CrossRefGoogle Scholar
  65. Gilbert W (1985) Genes in pieces revisted. Science 228: 823–824PubMedCrossRefGoogle Scholar
  66. Guzman-Casado M, Parody-Morreale A, Mateo PL, Sanchez-Ruiz JM (1990) Differential scanning calorimetry of lobster haemocyanin. Eur J Biochem 188: 181–185PubMedCrossRefGoogle Scholar
  67. Hagerman L (1983) Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions. Mar Biol 77: 11–19CrossRefGoogle Scholar
  68. Hearing VJ, Jimenez M (1987) Mammalian tyrosinase - the critical regulatory control point in melanocyte pigmentation. Int J Biochem 19: 1141–1147PubMedCrossRefGoogle Scholar
  69. Hearing VJ, Jimenez M (1989) Analysis of mammalian pigmentation at the molecular level. Pigm Cell Res 2: 75–85CrossRefGoogle Scholar
  70. Hennecke R, Gellissen G, Spindler-Barth M, Spindler K-D (1990) Hemocyanin synthesis in the crayfish, Astacus leptodactylus. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 503–506Google Scholar
  71. Herskovits TT (1988) Recent aspects of the subunit organization and dissociation of hemocyanins. Comp Biochem Physiol 91B: 597–611Google Scholar
  72. Herskovits TT, Erhunmwunsee LJ, San George RC, Herp A (1981) Subunit structure and dissociation of Callinectes sapidus hemocyanin. Biochim Biophys Acta 667: 44–58PubMedGoogle Scholar
  73. Herskovits TT, Russel MW, Carberry SE (1984) Light-scattering investigation of the subunit structure and sequential dissociation of Homarus americanus hemocyanin. Effects of salts and ureas on the acetylated and unmodified hexamers. Biochemistry 23: 1875–1881CrossRefGoogle Scholar
  74. Himmelwright RS, Eickman NC, LuBien CD, Lerch K, Solomon El (1980) Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins. J Am Chem Soc 102: 7339–7344CrossRefGoogle Scholar
  75. Hoylaerts M, Preaux G, Witters R, Lontie R (1979) Immunological heterogeneity of the subunits of Limulus polyphemus hemocyanin. Arch Int Physiol Biochim 87: 417–418PubMedGoogle Scholar
  76. Huber M, Lerch K (1985) Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry 24: 6038–6044PubMedCrossRefGoogle Scholar
  77. Huber M, Lerch K (1986) Active-site and protein structure of tyrosinase: comparison to hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 265–276Google Scholar
  78. Huber M, Lerch K (1988) Identification of two histidines as copper ligands in Streptomyces glaucescens tyrosinase. Biochemistry 27: 5610–5615PubMedCrossRefGoogle Scholar
  79. Hughes RC, Butters TD (1981) Glycosylation patterns in cells: an evolutionary marker? TIBS 6: 228–230Google Scholar
  80. Igarashi Y, Kimura K, Kajita A (1986) Calcium dependent allosteric modulation and assembly of the giant hemoglobin from the earthworm, Eisenia foetida. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 89– 92Google Scholar
  81. Jacobs M-P, Lontie R, Preaux G (1984) Isolation of an active haemocyanin-mRNA- containing fraction from Cancer pagurus. Arch Int Physiol Biochim 92: B30CrossRefGoogle Scholar
  82. Jameson BA, Wolf H (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. CABIOS 4: 45–48Google Scholar
  83. Jeffrey PD (1979) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Electron microscopy of native and reassembled molecules. Biochemistry 18: 2508–2513PubMedCrossRefGoogle Scholar
  84. Jeffrey PD, Shaw DC, Treacy GB (1976) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Studies of two different monomers and their participation in the formation of multiple hexamers. Biochemistry 15: 5527–5533PubMedCrossRefGoogle Scholar
  85. Jeffrey PD, Shaw DC, Treacy GB (1978) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Characterization of a dimeric subunit and its involvement in the formation of the 25S component. Biochemistry 17: 3078–3084PubMedCrossRefGoogle Scholar
  86. Jeffrey P, Marlborough D, Lamy J, Lamy J, Leclerc M (1981) Immunochemical properties of Cherax destructor hemocyanin. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Dekker, New York, pp 227–237Google Scholar
  87. Jekel PA, Bak HJ, Soeter NM, Vereijken JM, Beintema JJ (1988) Panulirus interruptus hemocyanin. The amino acid sequence of subunit b and anomalous behaviour of subunits a and b on polyacrylamide gel electrophoresis in the presence of SDS. Eur J Biochem 178: 403–412PubMedCrossRefGoogle Scholar
  88. Johnes G, Brown N, Manczak M, Shivanand H, Kafatos FC (1990) Molecular cloning, regulation and complete sequence of a hemocyanin-related, juvenile hormone- suppressible protein from insect hemolymph. J Biol Chem 265: 8596–8602Google Scholar
  89. Johnson BA (1987) Structure and function of the hemocyanin from a semi-terrestrial crab, Ocypode quadrata. J Comp Physiol B 157: 501–509PubMedCrossRefGoogle Scholar
  90. Jolies J, Jolies P, Lamy J, Lamy J (1979) Structural characterization of seven different subunits in Androctonus australis haemocyanin. FEBS Lett 106: 289–291CrossRefGoogle Scholar
  91. Jolley RL, Evans LH, Makino N, Mason HS (1974) Oxytyrosinase. J Biol Chem 249: 335–345PubMedGoogle Scholar
  92. Kantrowitz ER, Lipscomb WN (1990) Escherichia coli aspartate transcarbamylase: the molecular basis for a concerted allosteric transition. TIBS 15: 53–59PubMedGoogle Scholar
  93. Kegeles G, Tai M-S (1973) Rate constants of the hexamer dodecamer reaction of lobster hemocyanin. Biophys Chem 1: 46–50CrossRefGoogle Scholar
  94. Kejzlarova-Lepesant J, Mousseron S, Benes H, Jowett T, Chihara C, Claverie J-M, Lepesant J-A (1987) Structure and expression of the LSP-2 gene of Drosophila melanogaster. Biol Chem HS 368: 575–576Google Scholar
  95. Kempter B (1983) Site of hemocyanin biosynthesis in the tarantula Eurypelma californicum. Naturwissenschaften 70: 255–256CrossRefGoogle Scholar
  96. Kempter B (1986) Intracellular hemocyanin and site of biosynthesis in the spider Eurypelma californicum. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 489–494Google Scholar
  97. Kempter B, Markl J, Brenowitz M, Bonaventura C, Bonaventura J (1985) Immunological correspondence between arthropod hemocyanin subunits II. Xiphosuran (Limulus) and spider (Eurypelma, Cupiennius) hemocyanin. Biol Chem HS 366: 77–86Google Scholar
  98. Klarman A, Daniel E (1981) Structural basis of subunit heterogeneity in arthropod hemocyanins. Comp Biochem Physiol 70B: 115–123Google Scholar
  99. Klarman A, Gottlieb J, Daniel E (1979) Quaternary structure and arrangement of subunits in hemocyanin from the scorpion Leirus quinquestriatus. Biochemistry 18: 2239–2244PubMedCrossRefGoogle Scholar
  100. Kobert R (1903) Über Hämocyanin nebst einigen Notizen über Hämerythrin. Pflueger’s Arch Physiol 98: 411–427CrossRefGoogle Scholar
  101. König M, Agrawal OP, Schenkel H, Scheller K (1986) Incorporation of calliphorin into the cuticle of the developing blowfly, Calliphora vicina. Wilhelm Roux’ Arch Dev Biol 195: 296–301CrossRefGoogle Scholar
  102. Lamy JN (1987) Intramolecular localization of antigenic determinants by molecular immunoelectron microscopy. In: Burnett RM, Vogel HJ (eds) Biological organization: macromolecular interactions at high resolution. Academic Press, New York, pp 153– 191Google Scholar
  103. Lamy J, Richard M, Goyffon M (1970) Sur les modifications des electrophoregrammes en gel de polyacrylamide des proteines de l’hemolymphe des Scorpions Androctonus australis (L.) et Androctonus mauretanicus (Pocock), provoques par la congelation. CR Acad Sci Paris Ser D 270: 1627–1630Google Scholar
  104. Lamy J, Lamy J, Baglin MC, Weill J (1977) Scorpion hemocyanin subunits: properties, dissociation, association. In: Bannister JV (ed) Structure and function of haemocyanin. Springer, Berlin Heidelberg New York, pp 37–49CrossRefGoogle Scholar
  105. Lamy J, Lamy J, Weill J, Markl J, Schneider H-J, Linzen B (1979a) Hemocyanins in spiders, VII. Immunological comparison of the subunits of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 360: 889–895PubMedCrossRefGoogle Scholar
  106. Lamy J, Lamy J, Weill J (1979b) Arthropod hemocyanin structure: isolation of eight subunits in the scorpion. Arch Biochem Biophys 193: 140–149PubMedCrossRefGoogle Scholar
  107. Lamy J, Lamy J, Weill J, Bonaventura J, Bonaventura C, Brenowitz M (1979c) Immunological correlates between the multiple hemocyanin subunits of Limulus polyphemus and Tachypleus tridentatus. Arch Biochem Biophys 196: 324–339PubMedCrossRefGoogle Scholar
  108. Lamy J, Lamy J, Bonaventura J, Bonaventura C (1980) Structure, function and assembly in the hemocyanin system of the scorpion Androctonus australis. Biochemistry 19: 3033–3039PubMedCrossRefGoogle Scholar
  109. Lamy J, Bijlholt MMC, Sizaret P-Y, Lamy J, van Bruggen EFJ (1981) Quaternary structure of scorpion (Androctonus australis) hemocyanin. Localization of subunits with immunological methods and electron microscopy. Biochemistry 20: 1849–1856PubMedCrossRefGoogle Scholar
  110. Lamy J, Sizaret P-Y, Frank J, Verschoor A, Feldman R, Bonaventura J (1982) Architecture of Limulus polyphemus hemocyanin. Biochemistry 21: 6825–6833PubMedCrossRefGoogle Scholar
  111. Lamy J, Lamy J, Sizaret P-Y, Billiald P, Jolies P, Jolies J, Feldman RJ, Bonaventura J (1983a) Quaternary structure of Limulus polyphemus hemocyanin. Biochemistry 22: 5573–5583CrossRefGoogle Scholar
  112. Lamy J, Compin S, Lamy JN (1983b) Immunological correlates between the multiple isolated subunits of Androctonus australis and Limulus polyphemus hemocyanins: an evolutionary approach. Arch Biochem Biophys 223: 584–603PubMedCrossRefGoogle Scholar
  113. Lamy J, Lamy J, Sizaret PY, Billiald P, Motta G (1985a) Quaternary structure of arthropod hemocyanin. In: Lamy J, Truchot JP, Gilles R (eds) Respiratory pigments in animals. Relation structure-function. Springer, Berlin Heidelberg New York, pp 73– 86CrossRefGoogle Scholar
  114. Lamy J, Lamy J, Billiald P, Sizaret P-Y, Cave G, Frank J, Motta G (1985b) Approach to the direct intramolecular localization of antigenic determinants in Androctonus australis hemocyanin with monoclonal antibodies by molecular immunoelectron microscopy. Biochemistry 24: 5532–5542PubMedCrossRefGoogle Scholar
  115. Lamy JN, Lamy J, Billiald P, Sizaret P-Y, Taveau JC, Boisset N (1986) Mapping of antigenic determinants in Androctonus australis hemocyanin: preliminary results. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 185–201Google Scholar
  116. Lamy J, Billiald P, Taveau JC, Boisset N, Motta G, Lamy J (1990) Topological mapping of 13 epitopes on a subunit of Androctonus australis hemocyanin. J Struct Biol 103: 64–74PubMedCrossRefGoogle Scholar
  117. Lang WH (1988) cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl-terminal domain. Biochemistry 27: 7276–7282PubMedCrossRefGoogle Scholar
  118. Larson BA, Terwilliger NB, Terwilliger RC (1981) Subunit heterogeneity of Cancer magister hemocyanin. Biochim Biophys Acta 667: 294–302PubMedGoogle Scholar
  119. Leidescher T, Decker H (1990) Conformational changes of tarantula (Eurypelma californicum) hemocyanin detected with a fluorescent probe, NBD chloride. Eur J Biochem 187: 617–625PubMedCrossRefGoogle Scholar
  120. Lerch K (1988) Protein and active-site structure of tyrosinase. In: Bagnara JT (ed) Advances in pigment cell research. Prog Clin Biol Res 256: 85–98PubMedGoogle Scholar
  121. Lerch K, Huber M, Schneider H-J, Drexel R, Linzen B (1986) Different origins of metal binding sites in binuclear copper proteins, tyrosinase and hemocyanin. J Inorg Chem 26: 213–217Google Scholar
  122. Linzen B (1983) Subunit heterogeneity in arthropodan hemocyanins. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 27–38Google Scholar
  123. Linzen B, Schartau W, Schneider H-J (1985a) Primary structure of arthropod hemocyanins. In: Lamy J, Truchot JP, Gilles R (eds) Respiratory pigments in animals. Relation structure-function. Springer, Berlin Heidelberg New York, pp 59–72CrossRefGoogle Scholar
  124. Linzen B, Soeter MN, Riggs AF, Schneider H-J, Schartau W, Moore MD, Yokota E, Behrens PQ, Nakashima H, Takagi T, Nemoto T, Vereijken JM, Bak HJ, Beirtema JJ, Volbeda A, Gaykema WPJ, Hol WGJ (1985b) The structure of arthropod hemocyanins. Science 229: 519–524PubMedCrossRefGoogle Scholar
  125. Loehr TM, Sanders-Loehr J (1984) Structural information on copper proteins from resonance Raman spectroscopy. In: Lontie R (ed) Copper proteins and copper enzymes 2. CRC Press, Boca Raton, pp 116–155Google Scholar
  126. Loewe R (1978) Hemocyanins in spiders. V. Fluorimetric recording of oxygen binding curves, and its application to the analysis of allosteric interactions in Eurypelma californicum hemocyanin. J Comp Physiol B 128: 161–168CrossRefGoogle Scholar
  127. Lorösch J, Haase W, Huong PV (1986) Resonance Raman spectroscopic investigations on phenolate bridged binuclear Cu(II) complexes: a basis for the identification of the endogenous bridging ligand in hemocyanin. J Inorg Biochem 27: 53–63CrossRefGoogle Scholar
  128. Magnus KA, Lattman EE, Hol WGJ, Volbeda A (1990) Hexamers of subunit-II of Limulus hemocyanin (a 48-mer) have the same quaternary structure as whole Panulirus hemocyanin molecules. Biophys J 57: A428Google Scholar
  129. Maguire GB, Fielder DR (1975) Disc electrophoresis of the haemolymph proteins of some portunid crabs (Decapoda: Portunidae). I. Effects of storage. Comp Biochem Physiol 52A: 39–42CrossRefGoogle Scholar
  130. Makino N (1986) Analysis of oxygen binding to Panulirus japonicus hemocyanin. The effect of divalent cations on the allosteric transition. Eur J Biochem 154: 49–55PubMedCrossRefGoogle Scholar
  131. Makino N (1988) Subunits of Panulirus japonicus hemocyanin. 2. Cooperativity of the homogeneous hexamers. Eur J Biochem 173: 431–435PubMedCrossRefGoogle Scholar
  132. Makino N, Kimura S (1988) Subunits of Panulirus japonicus hemocyanin. 1. Isolation and properties. Eur J Biochem 173: 423–430PubMedCrossRefGoogle Scholar
  133. Mangum CP (1980) Respiratory function of the hemocyanins. Am Zool 20: 19–38Google Scholar
  134. Mangum CP (1983) Oxygen transport in the blood. In: Mantel LH (ed) The biology of Crustacea, vol 5. Academic Press, New York, pp 373–429Google Scholar
  135. Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248 (Regulatory Integrative Comp Physiol 17): R505–R514PubMedGoogle Scholar
  136. Mangum CP (1990) The fourth annual riser lecture: the role of physiology and biochemistry in understanding animal phylogeny. Proc Biol Soc Wash 103: 235–247Google Scholar
  137. Mangum CP, Johansen K (1975) The colloid osmotic pressures of invertebrate body fluids. J Exp Zool 63: 661–671Google Scholar
  138. Mangum CP, Rainer JS (1988) The relationship between subunit composition and O2 binding of blue crab hemocyanin. Biol Bull 174: 77–82CrossRefGoogle Scholar
  139. Mangum CP, Towle D (1977) Physiological adaptation to unstable environments. Am Sci 65: 67–75PubMedGoogle Scholar
  140. Mangum CP, Scott JL, Black REL, Miller KI, van Holde KE (1985) Centipedal hemocyanin: its structure and its implications for arthropod phylogeny. Proc Natl Acad Sci USA 82: 3721–3725PubMedCrossRefGoogle Scholar
  141. Markl J (1980) Hemocyanins in spiders. XI. The quaternary structure of Cupiennius hemocyanin. J Comp Physiol B 140: 199–207CrossRefGoogle Scholar
  142. Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol Bull 171: 90–115CrossRefGoogle Scholar
  143. Markl J (1987) Der Immunmodulator Hämocyanin - ein multigener, allosterischer Proteinkomplex. In: Klippel KE, Harzmann R (eds) Welche Chancen hat die Tumorimmunologie heute? SMV, München-Planegg, pp 73–90Google Scholar
  144. Markl J, Kempter B (1981a) Subunit heterogeneity in crustacean hemocyanins as deduced by two-dimensional immuno electrophoresis. J Comp Physiol B 140: 495–502CrossRefGoogle Scholar
  145. Markl J, Kempter B (1981b) Subunit heterogeneity in arthropod hemocyanins. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Marcel Dekker, New York, pp 125–137Google Scholar
  146. Markl J, Winter S (1989) Subunit-specific monoclonal antibodies to tarantula hemocyanin, and a common epitope shared with calliphorin. J Comp Physiol B 159: 139–151CrossRefGoogle Scholar
  147. Markl J, Schmid R, Czichos-Tiedt S, Linzen B (1976) Haemocyanins in spiders. II. Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe-Seyler’s Z Physiol Chem 357: 1713–1725PubMedCrossRefGoogle Scholar
  148. Markl J, Hofer A, Bauer G, Markl A, Kempter B, Brenzinger M, Linzen B (1979a) Subunit heterogeneity in arthropod hemocyanins. II. Crustacea. J Comp Physiol B 133: 167–175CrossRefGoogle Scholar
  149. Markl J, Markl A, Schartau W, Linzen B (1979b) Subunit heterogeneity in arthropod hemocyanins. I. Chelicerata. J Comp Physiol B 130: 283–292CrossRefGoogle Scholar
  150. Markl J, Strych W, Schartau W, Schneider H-J, Schöberl P, Linzen B (1979c) Hemocyanins in spiders. VI. Comparison of the polypeptide chains of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 360: 639–650PubMedCrossRefGoogle Scholar
  151. Markl J, Savel A, Decker H, Linzen B (1980) Hemocyanins in spiders. IX. Homogeneity, subunit composition and the basic oligomeric structure of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 361: 649–660PubMedCrossRefGoogle Scholar
  152. Markl J, Decker H, Stöcker W, Linzen B, Schutter WG, van Bruggen EFJ (1981a) On the role of dimeric subunits in the quaternary structure of arthropod hemocyanins. Hoppe-Seyler’s Z Physiol Chem 362: 185–188PubMedGoogle Scholar
  153. Markl J, Kempter B, Linzen B, Bijlholt MMC, van Bruggen EFJ (1981b) Hemocyanins in spiders. XVI. Subunit topography and a model of the quaternary structure of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 1631–1641PubMedCrossRefGoogle Scholar
  154. Markl J, Savel A, Linzen B (1981c) Hemocyanins in spiders. XIV. Subunit composition of dissociation intermediates, and its bearing on the quaternary structure of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 1255–1262PubMedCrossRefGoogle Scholar
  155. Markl J, Bonaventura C, Bonaventura J (1981d) Hemocyanins in spiders. XIII. Kinetics of oxygen dissociation from individual subunits of Eurypelma and Cupiennius hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 429–437PubMedCrossRefGoogle Scholar
  156. Markl J, Decker H, Linzen B, Schutter WG, van Bruggen EFJ (1982) Hemocyanins in spiders. XV. The role of individual subunits in the assembly of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 363: 73–87PubMedCrossRefGoogle Scholar
  157. Markl J, Gebauer W, Runzler R, Avissar I (1984) Immunological correspondences between arthropod hemocyanin subunits. I. Scorpion (Leiurus, Androctonus) and spider (Eurypelma, Cupiennius) hemocyanin. Hoppe-Seyler’s Z Physiol Chem 365: 619–631PubMedCrossRefGoogle Scholar
  158. Markl J, Stöcker W, Runzler R, Precht E (1986a) Immunological correspondences between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 281–292Google Scholar
  159. Markl J, Savel A, Knabe B, Storz H, Krabbe T, Abel S, Markl B (1986b) Mercury ions - a tool to study the specific role of individual subunits in the allosteric interaction of arthropod hemocyanins. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 403–406Google Scholar
  160. Markl J, Stumpp S, Bosch FX, Voit R (1990) Hemocyanin biosynthesis in the tarantula Eurypelma californicum, studied by in situ hybridization and immuno-electron microscopy. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 497–502Google Scholar
  161. Marx R (1983) Ultrastructural aspects of protein synthesis and protein transport in larvae of Calliphora vicina. In: Scheller K (ed) The larval serum proteins of insects. Thieme, Stuttgart, pp 50–60Google Scholar
  162. Miller KJ, Eidred NW, Arisaka F, van Holde KE (1977) Structure and function of hemocyanin from thallassinid shrimp. J Comp Physiol B 115: 171–184CrossRefGoogle Scholar
  163. Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transition: a plausible model. J Mol Biol 12: 88–118PubMedCrossRefGoogle Scholar
  164. Morris S (1990) Organic ions as modulators of respiratory pigment function during stress. Physiol Zool 63: 253–287Google Scholar
  165. Müller G, Ruppert S, Schmid E, Schütz G (1988) Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J 7: 2732–2730Google Scholar
  166. Munn EA, Greville GD (1969) The soluble proteins of developing Calliphora erythrocephala, particularly calliphorin, and similar proteins in other insects. J Insect Physiol 15: 1935–1950CrossRefGoogle Scholar
  167. Munn EA, Feinstein A, Greville GD (1971) The isolation and properties of the protein calliphorin. Biochem J 124: 367–374PubMedGoogle Scholar
  168. Murray AC, Jeffrey PD (1974) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Subunit heterogeneity. Biochemistry 13: 3667–3671PubMedCrossRefGoogle Scholar
  169. Nakahara A, Suzuki S, Kino J (1983) Tyrosinase activity of squid hemocyanin. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 319–322Google Scholar
  170. Nakashima H, Behrens PO, Moore MD, Yokota E, Riggs AF (1986) Structure of hemocyanin II of the horseshoe crab, Limulus polyphemus. J Chem Biol 261: 10526– 10533Google Scholar
  171. Nemoto T, Takagi T (1983) Primary structure of Tachypleus tridentatus a chain. In: Wood JE (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 89–92Google Scholar
  172. Neuteboom B, Dokter W, van Gijsen J, Rensink H, De Vries J, Beintema JJ (1989a) Partial amino acid sequence of a hemocyanin subunit from Panulirus vulgaris. Comp Biochem Physiol 94B: 593–597Google Scholar
  173. Neuteboom B, Sierdsema JS, Beintema JJ (1989b) The relationship between N-terminal sequences and immunological characterization of crustacean hemocyanins. Comp Biochem Physiol 94B: 587–592Google Scholar
  174. Ochs RL, Ochs DC, Burton PR (1980) Axons of crayfish nerve cord contain intracellular hemocyanin. J Cell Biol 87: CN623Google Scholar
  175. Olson K, Terwilliger N, McDowell J (1988) Structure of hemocyanin in larval and adult American lobsters. Am Zool 28: A47Google Scholar
  176. Palli SR, Locke M (1987) Purification and localization of the three major haemolymph proteins of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). Arch Insect Biochem Biophys 5: 233–245CrossRefGoogle Scholar
  177. Patak A, Baldwin J (1989) Immunochemical comparisons of haemocyanins from Australian freshwater crayfish - phylogenetic implications. Biochem Syst Ecol 17: 249–252CrossRefGoogle Scholar
  178. Penz F, Nahke P, Decker H (1990). Unfolding of Eurypelma hemocyanin subunit e induced with urea. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 197–200Google Scholar
  179. Perutz MF (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22: 139–236PubMedCrossRefGoogle Scholar
  180. Pfiffner E, Lerch K (1981) Histidine at the active site of Neurospora tyrosinase. Biochemistry 20: 6030–6035CrossRefGoogle Scholar
  181. Pickett SM, Riggs AF, Larimer JL (1966) Lobster hemocyanin: properties of the minimum functional subunit and of aggregates. Science 151: 1005–1007PubMedCrossRefGoogle Scholar
  182. Pilz J, Goral K, Hoylaerts M, Witters R, Lontie R (1980) Studies by small-angle X-ray scattering of the quaternary structure of the 24S-component of the hemocyanin of Astacus leptodactylus in solution. Eur J Biochem 105: 539–543PubMedCrossRefGoogle Scholar
  183. Preaux G, Vandamme A, De Bethune B, Jacobs M-P, Lontie R (1986) Haemocyanin- mRNA-rich fractions of cephalopodan Decabrachia and of Crustacea, their in vivo and in vitro translation. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 485–488Google Scholar
  184. Preaux G, Gielens C, Witters R, Lontie R (1988) The structure of molluscan haemocyanins and their homology with tyrosinases. Bull Soc Chim Belg 97: 1037–1044CrossRefGoogle Scholar
  185. Precht E (1990) Immunologische Heterogenität und Sauerstoff-bindungseigenschaften der Untereinheiten des Hämocyanins aus Krabben. Thesis, Univ MünchenGoogle Scholar
  186. Presnell SR, Cohen FE (1989) Topological distribution of four-a-helix bundles. Proc Natl Acad Sci USA 86: 6592–6596PubMedCrossRefGoogle Scholar
  187. Quagliariello G (1923) Das Hämocyanin. Naturwissenschaften 14: 261–268CrossRefGoogle Scholar
  188. Redfield AC (1934) The haemocyanins. Biol Rev 9: 175–212CrossRefGoogle Scholar
  189. Reed AC (1985) Hemocyanin cooperativity: a copper coordination chemistry perspective. In: Karlin KD, Zubieta J (eds) Biological and inorganic copper chemistry. Adenine, New York, pp 61–73Google Scholar
  190. Reisinger P (1986) Circular dichroism spectra of native 37s hemocyanin from the spider Eurypelma californicum and its subunits. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 203–206Google Scholar
  191. Ricchelli B, Salvato B, Filippi B, Jori G (1980) Conformational changes of Carcinus maenas hemocyanin induced by urea. Arch Biochem Biophys 202: 277–288PubMedCrossRefGoogle Scholar
  192. Ricchelli F, Tealdo E, Salvato B (1983) Differential quenching effect of the copper ions in the active site on the hemocyanin fluorescence. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 301–304Google Scholar
  193. Richey B, Decker H, Gill SJ (1985) Binding of oxygen and carbon monoxide to arthropodan hemocyanin: an allosteric analysis. Biochemistry 24: 109–117PubMedCrossRefGoogle Scholar
  194. Robert CH, Decker H, Richey B, Gill SJ, Wyman J (1987) Nesting: hierarchies of allosteric interactions. Proc Natl Acad Sci USA 84: 1891–1895PubMedCrossRefGoogle Scholar
  195. Rochu D, Fine JM (1978) Antigenic structure of the hemocyanin in six species of decapod Crustacea. Comp Biochem Physiol 59A: 145–150CrossRefGoogle Scholar
  196. Rochu D, Fine JM (1980) Cancer pagurus hemocyanin: electrophoretic and antigenic heterogeneity of the monomeric subunits. Comp Biochem Physiol 66B: 273–278Google Scholar
  197. Rochu D, Fine JM (1984a) Characterization of the subunits of Cancer pagurus hemocyanin. Comp Biochem Physiol 77B: 333–336Google Scholar
  198. Rochu D, Fine JM (1984b) Cancer pagurus hemocyanin: subunit arrangement and subunit evolution in functional polymeric forms. Comp Biochem Physiol 78B: 67–74Google Scholar
  199. Ruppert S, Müller G, Kwon B, Schütz G (1988) Multiple transcripts of the mouse tyrosinase gene are generated by alternative splicing. EMBO J 7: 2715–2722PubMedGoogle Scholar
  200. Ryan RO, Anderson DR, Grimes WJ, Law JH (1985) Arylphorin from Manduca sexta: carbohydrate structure and immunological studies. Arch Biochem Biophys 243: 115– 124PubMedCrossRefGoogle Scholar
  201. Sakurai H, Fujii T, Izumi S, Tomino S (1988) Structure and expression of gene coding for sex-specific storage protein of Bombyx mori. J Biol Chem 263: 7876–7880PubMedGoogle Scholar
  202. Salvato B, Beltramini M (1990) Hemocyanin molecular architecture: structure and reactivity of the binuclear copper-active site. Life Chem Rep 8: 1–47Google Scholar
  203. Salvato B, Sartore S, Rizzotti M, Ghiretti-Magaldi A (1972) Molecular weight determination of polypeptide chains of molluscan and arthropod hemocyanins. FEBS Lett 22: 5–7PubMedCrossRefGoogle Scholar
  204. Salvato B, Jori G, Piazzese A, Ghiretti F, Beltramini M, Lerch K (1983) Enzymic activities of type-3 copper pair in Octopus vulgaris haemocyanin. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 313–317Google Scholar
  205. Savel-Niemann A, Markl J, Linzen B (1988) Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates. J Mol Biol 204: 385–395PubMedCrossRefGoogle Scholar
  206. Schartau W, Eyerie F, Reisinger P, Geisert H, Storz H, Linzen B (1983) Hemocyanins in spiders. XIX. Complete amino-acid sequence of subunit d from Eurypelma californicum hemocyanin, and comparison to chain e. Hoppe-Seyler’s Z Physiol Chem 364: 1383–1409PubMedCrossRefGoogle Scholar
  207. Schartau W, Metzger W, Sonner P, Pysny W (1986) Hemocyanins of the spider Eurypelma californicum: amino acid sequence of subunit a and of smaller CB peptides of subunit b and c. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 203–206Google Scholar
  208. Schartau W, Metzger W, Sonner P, Geisert H, Storz H (1990) Hemocyanins in spiders. XXIII. Complete amino-acid sequence of subunit a of Eurypelma californicum hemocyanin. Biol Chem HS 371: 557–565Google Scholar
  209. Scheller K (1983) The larval serum proteins of insects. Thieme, Stuttgart, pp 1–190Google Scholar
  210. Scheller K (1987) Larval serum proteins of insects. Biol Chem HS 368: 571–578Google Scholar
  211. Scheller K, Fischer B, Schenkel H (1990) Molecular properties, functions and developmentally regulated biosynthesis of arylphorin in Calliphora vicina. In: Hagedorn HH, Hildebrand JG, Kidwell MG, Law JH (eds) Molecular insect science. Plenum, New York, pp 155–162Google Scholar
  212. Schneider H-J, Markl J, Schartau W, Linzen B (1977) Hemocyanins in spiders. IV. Subunit heterogeneity in Eurypelma (Dugesiella) hemocyanin, and separation of polypeptide chains. Hoppe-Seyler’s Z Physiol Chem 358: 1133–1141PubMedCrossRefGoogle Scholar
  213. Schneider H-J, Drexel R, Feldmaier G, Linzen B, Lottspeich F, Henschen A (1983) Hemocyanins in spiders. XVIII. Complete amino-acid sequence of subunit e from Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 364: 1357– 1381PubMedCrossRefGoogle Scholar
  214. Schneider H-J, Voll W, Lehmann L, Grißhammer R, Goettgens A, Linzen B (1986) Partial amino acid sequence of crayfish (Astacus leptodactylus) hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 172– 176Google Scholar
  215. Schönenberger N, Cox JA, Gabbiani G (1980) Evidence for hemocyanin formation in the compound eye of Squilla mantis (Crustacea Stomatopoda). Cell Tissue Res 205: 397– 409PubMedCrossRefGoogle Scholar
  216. Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) The biology of the Crustacea. Academic Press, New York, pp 93–147Google Scholar
  217. Schutter WG, Keegstra W, Booy F, Haker J, van Bruggen EFJ (1986) STEM and cryo-TEM of Limulus and Kelletia hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 217–220Google Scholar
  218. Senkbeil EG, Wriston JC (1981a) Catabolism of hemocyanin in the American lobster, Homarus americanus. Comp Biochem Physiol 69B: 781–789Google Scholar
  219. Senkbeil EG, Wriston JC (1981b) Hemocyanin synthesis in the American lobster, Homarus americanus. Comp Biochem Physiol 68B, 163–171Google Scholar
  220. Senozan NM, Briggs M (1989) Hemocyanin levels in the giant keyhole limpet, Megathura crenulata, from the coast of California. Comp Biochem Physiol 94A: 195–199CrossRefGoogle Scholar
  221. Sharp PM (1988) Introns and the origin of life. TREE 3: 154–156Google Scholar
  222. Sherman RG (1973) Ultrastructurally different hemocytes in a spider. Can J Zool 51: 1155–1159CrossRefGoogle Scholar
  223. Sizaret P-Y, Frank J, Lamy J, Weill J, Lamy JN (1982) A refined quaternary structure of Androctonus australis hemocyanin. Eur J Biochem 127: 501–506PubMedCrossRefGoogle Scholar
  224. Sminia T, Boer HH, Niemantsverdriet A (1972) Haemoglobin producing cells in freshwater snails. Z Zellforsch 135: 563–568PubMedCrossRefGoogle Scholar
  225. Soeter NM, Jekel PA, Beintema JJ, Volbeda A, Hol WGJ (1987) Primary and tertiary structures of the first domain of Panulirus interruptus hemocyanin and comparison of arthropod hemocyanins. Eur J Biochem 169: 323–332PubMedCrossRefGoogle Scholar
  226. Solomon EI (1981) Binuclear copper active site. Hemocyanin, tyrosinase and type 3 copper oxydases. In: Spiro TG (ed) Copper proteins. Wiley, New York, pp 41–108Google Scholar
  227. Sterner R, Decker H (1990) Conformational transition of Carcinus maenas hemocyanin monitored with an organic dye (neutral red). In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 193–196Google Scholar
  228. Stöcker W, Raeder U, Bijlholt MMC, Wichertjes T, Van Bruggen EFJ, Markl J (1988) The quaternary structure of four crustacean 2 × 6 hemocyanins: immunocorrelation, stoichiometry, reassembly and topology of individual subunits. J Comp Physiol 158B: 271–289Google Scholar
  229. Sugita H, Sekiguchi K (1975) Heterogeneity of the minimum functional unit of hemocyanins from the spider (Argiope bruennichii), the scorpion (Heterometrus sp.), and the horseshoe crab (Tachypleus tridentatus). J Biochem 78: 713–718PubMedGoogle Scholar
  230. Sullivan B, Bonaventura J, Bonaventura C (1974) Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L. Proc Natl Acad Sci USA 71: 2558–2562PubMedCrossRefGoogle Scholar
  231. Sullivan B, Bonaventura J, Bonaventura C, Godette G (1976) Hemocyanin of the horseshoe crab, Limulus polyphemus. Structural differentiation of the isolated components. J Biol Chem 251: 7644–7648PubMedGoogle Scholar
  232. Takagi T (1986) Amino acid sequence of the C-terminal domain of octopus (Paroctopus dofleini dofleini) hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 259–262Google Scholar
  233. Takagi T, Nemoto T (1980) Tachypleus tridentatus hemocyanin. Separation and characterization of monomer subunits and studies of sulfhydryl groups. J Biochem 87: 1785–1793PubMedGoogle Scholar
  234. Telfer WH, Kunkel JG (1991) The function and evolution of insect storage hexamers. Annu Rev Entomol 36: 205–288PubMedCrossRefGoogle Scholar
  235. Telfer WH, Massey HC (1987) A storage hexamer from Hyalophora that binds riboflavin and resembles the apoprotein of hemocyanin. In: Law JH (ed) UCLA Symp Mol Cell Biol New Ser 49. Alan R Liss, New York, pp 305–314Google Scholar
  236. Terwilliger NB (1982) Effect of subunit composition on the quaternary structure of isopod (Ligia pallasii) hemocyanin. Biochemistry 21: 2579–2586PubMedCrossRefGoogle Scholar
  237. Terwilliger NB, Terwilliger RC (1982) Changes in the subunit structure of Cancer magister hemocyanin during larval development. J Exp Zool 221: 181–191CrossRefGoogle Scholar
  238. Terwilliger NB, Terwilliger RC, Applestein M, Bonaventura C, Bonaventura J (1979) Subunit structure and oxygen binding by hemocyanin of the isopod Ligia exotica. Biochemistry 18: 102–108PubMedCrossRefGoogle Scholar
  239. Topham RW, Tesh S, Bonaventura C, Bonaventura J (1986) Active-site heterogeneity as revealed by peroxide and mercury: interactions with purified subunits of Limulus hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 407–416Google Scholar
  240. Traut TW (1988) Do exons code for structural or functional units in proteins? Proc Natl Acad Sci USA 85: 2944–2948PubMedCrossRefGoogle Scholar
  241. Treacy GB, Jeffrey PD (1986) Subunit heterogeneity and aggregate formation in Cherax destructor and Jasus sp. hemocyanins. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 207–211Google Scholar
  242. Van Breemen JFL, Ploegman JH, Van Bruggen EFJ (1979) Structure of Helix pomatia oxy-β-hemocyanin and deoxy-ß-hemocyanin tubular polymers. Eur J Biochem 100: 61–65PubMedCrossRefGoogle Scholar
  243. Van Bruggen EFJ (1983) An electron microscopists view of the quaternary structure of arthropodan and molluscan hemocyanins. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 1–14Google Scholar
  244. Van Bruggen EFJ, Bijlholt MMC, Schütter WG, Wichertjes T, Bonaventura J, Bonaventura C, Lamy J, Lamy J, Leclerc M, Schneider H-J, Markl J, Linzen B (1980) The role of structurally diverse subunits in the assembly of three cheliceratan hemocyanins. FEBS Lett 116: 207–210CrossRefGoogle Scholar
  245. Van Bruggen EFJ, Schutter WG, Breemen JFL, Bijlholt MMC, Wichertjes T (1981) The hemocyanins. In: Harris JR (ed) Electron microscopy of proteins, 1. Academic Press, London, pp 1–38Google Scholar
  246. Van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6: 187–194PubMedGoogle Scholar
  247. Van Heel M, Keegstra W, Schutter W, Van Bruggen EFJ (1983) Arthropod hemocyanin structures studied by image analysis. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 69–73Google Scholar
  248. Van Holde KE, Brenowitz M (1981) Subunit structure and physical properties of the hemocyanin of the giant isopod Bathynomus giganteus. Biochemistry 20: 5232–5239PubMedCrossRefGoogle Scholar
  249. Van Holde KE, Miller KJ (1982) Haemocyanins. Q Rev Biophys 15: 1–129PubMedCrossRefGoogle Scholar
  250. Van Holde KE, van Bruggen EFJ (1971) The hemocyanins. In: Timasheff SN, Fasman GD (eds) Biological macromolecules 5. Dekker, New York, pp 1–53Google Scholar
  251. Van Kuik JA (1987) Structural determination of the carbohydrate chains from arthropod and mollusc hemocyanin by means of 500-mHz 1H-NMR spectroscopy. Thesis, Rijksuniversiteit Utrecht, NetherlandsGoogle Scholar
  252. Van Kuik JA, van Halbeek H, Kamerling JP, Vliegenthart JFG (1986) Primary structure of the neutral carbohydrate chains of hemocyanin from Panulirus interruptus. Eur J Biochem 159: 297–301PubMedCrossRefGoogle Scholar
  253. Vinogradov SN (1985) The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol 82B: 1–15Google Scholar
  254. Voit R, Schneider H-J (1986) Tarantula hemocyanin mRNA. In vitro translation, cDNA cloning and nucleotide sequence corresponding to subunit e. Eur J Biochem 159: 23–29PubMedCrossRefGoogle Scholar
  255. Voit R, Feldmaier-Fuchs G (1990) Arthropod hemocyanins: molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e. J Biol Chem 265: 19447–19452PubMedGoogle Scholar
  256. Volbeda A, Hoi WGJ (1989a) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 Å resolution. J Mol Biol 209: 249–279PubMedCrossRefGoogle Scholar
  257. Volbeda A, Hoi WGJ (1989b) Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocanins. Possible implications for the evolution of oxygen transport proteins. J Mol Biol 206: 531–546PubMedCrossRefGoogle Scholar
  258. Volbeda A, Feiters MC, Vincent MG, Bouwman E, Dobson B, Kalk, KH, Reedijk J, Hol WGJ (1989) Spectroscopic investigations of Panulirus interruptus hemocyanin in the crystalline state. Eur J Biochem 181: 669–673PubMedCrossRefGoogle Scholar
  259. Voll W, Voit R (1990) Characterization of the gene encoding the hemocyanin subunit e from the tarantula Eurypelma californicum. Proc Natl Acad Sci USA 87: 5312– 5316PubMedCrossRefGoogle Scholar
  260. Vranckx R, Durliat M (1986) Cuticular proteins in the crayfish Astacus leptodactylus. I. Main components. Comp Biochem Physiol 85B: 255–265Google Scholar
  261. Vuillaume M, Ducancel F, Calvayrac R, Rabilloud T Hubert M, Goyffon M (1989) Correlations between the catalase-like activity, and the H2O2-ATP production of haemocyanin and its subunits; implications with the radioresistance of the scorpion Androctonus australis. Comp Biochem Physiol 92B: 17–23Google Scholar
  262. Wache S, Terwilliger NB, Terwilliger RC (1988) Hemocyanin structure changes during early development of the crab Cancer productus. J Exp Zool 247: 23–32CrossRefGoogle Scholar
  263. Wade RH, Taveau, JC, Lamy JN (1989) Concerning the axial rotational flexibility of the Fab regions of immunoglobulin G. J Mol Biol 206: 349–356PubMedCrossRefGoogle Scholar
  264. Waxman L (1975) The structure of arthropod and mollusc hemocyanin. J Biol Chem 250: 3796–3806PubMedGoogle Scholar
  265. Wibo M (1966) Recherches sur les hemocyanins des arthropodes; constantes de sedimentation et aspects morphologiques. Thesis, Univ Cathol Louvain, BelgiumGoogle Scholar
  266. Wichertjes T, Keegstra W, Neuteboom B, Hazes B, Beintema JJ, Van Bruggen EFJ (1989) Crystallization properties and structure of Panulirus interruptus haemocyanin. Eur J Biochem 184: 287–296PubMedCrossRefGoogle Scholar
  267. Willot E, Wang X-Y, Wells MA (1989) cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein. Homology to arthropod hemocyanin. J Biol Chem 264: 19052–19059Google Scholar
  268. Winkler M, Lerch K, Solomon EI (1981) Competitive inhibitor binding to the binuclear copper active site in tyrosinase. J Am Chem Soc 103: 7001–7003CrossRefGoogle Scholar
  269. Wood EJ (1980) The oxygen transport and storage proteins in invertebrates. Essays Biochem 16: 1–47PubMedGoogle Scholar
  270. Wood EJ, Bonaventura J (1981) Identification of Limulus polyphemus haemocyanin messenger RNA. Biochem J 196: 653–656PubMedGoogle Scholar
  271. Wyman J (1984) Linkage graphs: a study in the thermodynamics of macromolecules. Q Rev Biophys 17: 453–488PubMedCrossRefGoogle Scholar
  272. Yoo B-S, Lee K-S, Lee J-H, Yang K-H (1989) The subunit heterogeneity of Portunus trituberculatus haemocyanin. Comp Biochem Physiol 92B: 323–327Google Scholar
  273. Zatta P, Ghiretti F (1983) Non-respiratory functions of hemocyanin. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 329–332Google Scholar
  274. Zatta P, Moschini G, Buso P, Collauti P, Stievani B (1983) Hemocyanin as metal transport protein in Carcinus maenas blood. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 333–334Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. Markl
    • 1
  • H. Decker
    • 2
  1. 1.Institute of ZoologyUniversity of MainzGermany
  2. 2.Institute of ZoologyUniversity of MünchenGermany

Personalised recommendations