Skip to main content

Oxygen Carriers as Molecular Models of Allosteric Behavior

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

Cooperative phenomena, in which events at one place determine what happens at another, are best known in physics, with the phenomenon of phase transitions as a classic example. Cooperative phenomena also have an important function in biology that was first defined and analyzed in a seminal paper published a quarter century ago (Monod et al. 1965). The classic example of cooperativity among biological macromolecules is that of the binding of oxygen by hemoglobin. According to simple mass action law, with the assumption that the four oxygen-binding sites on Hb are identical and independent or noninteracting:

$${\text{HbO}_2 \longleftarrow \text{K}_{\text{diss}}\longrightarrow}\text{Hb} +\text{O}_2\;\text{and}\; [\text{Hb}][\text{O}_2]\: =\text{K}_{\text{diss}}[{\text{HbO}_2}]$$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair GS (1925) The hemoglobin system, VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 63: 529–535

    CAS  Google Scholar 

  • Antonini E, Chiancone E (1977) Assembly of multisubunit respiratory proteins. Annu Rev Biophys Bioeng 6: 239–271

    Article  PubMed  CAS  Google Scholar 

  • Arisaka F, Van Holde KE (1979) Allosteric properties and the association equilibria of hemocyanin from Callianassa californiensis. J Mol Biol 134: 41–73

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Serigstad B (1989) Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers. Biochemistry 28: 8819–8827

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Wolters M, Van Bruggen EFJ (1976) Proteolytic fragmentation of Helix pomatia α-hemocyanin: structural domains in the polypeptide chain. Biochemistry 15: 2618–2623

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Bonaventura C, Bonaventura J (1978) Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp Penaeus setiferus. Biochemistry 17: 2148–2154

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Bonaventura C, Bonaventura J (1982) Chloride and pH dependence of cooperative interactions in Limulus polyphemus hemocyanin. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Alan R Liss, New York, pp 231–256

    Google Scholar 

  • Brunori M, Coletta M, Di Cera E (1986) A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. Biophys Chem 23: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Connelly PR, Gill SJ, Miller KE, Zhou G, Van Holde KE (1989) Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin. Biochemistry 28: 1835–1843

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Connelly PR, Robert CH, Gill SJ (1988) Nested allosteric interactions in Tarantula hemocyanin revealed through the binding of oxygen and carbon monoxide. Biochemistry 27: 6901–6908

    Article  PubMed  CAS  Google Scholar 

  • DiCera E, Robert CH, Gill SJ (1987) Allosteric interpretation of the oxygen-binding reaction of human hemoglobin tetramers. Biochemistry 26: 4003–4008

    Article  CAS  Google Scholar 

  • Ellerton DH, Ellerton NF, Robinson HA (1983) Hemocyanin - a current perspective. Prog Biophys Mol Biol 41: 143–248

    Article  PubMed  CAS  Google Scholar 

  • Gielens C, Preaux G, Lontie R (1977) Structural investigations on ß-haemocyanin of Helix pomatia by limited proteolysis. In: Bannister JV (ed) Structure and function of haemocyanin. Springer, Berlin Heidelberg New York, pp 85–94

    Chapter  Google Scholar 

  • Gill SJ, DiCera E, Doyle ML, Bishop GA, Robert CH (1987) Oxygen binding constants for human hemoglobin tetramers. Biochemistry 26: 3995–4002

    Article  PubMed  CAS  Google Scholar 

  • Hess VL, Szabo A (1979) Ligand binding to macromolecules. Allosteric and sequential models of cooperativity. J Chem Educ 56: 289–293

    Article  CAS  Google Scholar 

  • Imai K, Yonetani T (1975) pH dependence of the Adair constants of human hemoglobin. J Biol Chem 250: 2227–2231

    PubMed  CAS  Google Scholar 

  • Johnson ML, Halvorson HR, Ackers GK (1976) Oxygenation-linked subunit interactions in human hemoglobin: analysis of linkage functions for constituent energy terms. Biochemistry 15: 5363–5371

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA, Bonaventura C, Bonaventurs J (1988) Allostery in Callinectes sapidus hemocyanin: cooperative oxygen binding and interactions with L-lactate, calcium and protons. Biochemistry 27: 1995–2001

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE Jr, Nemethy D, Filmer DF (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5: 365–385

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Leclerc M, Sizaret P, Lamy J, Miller K, McPharland R, Van Holde KE (1987) Octopus dofleini hemocyanin: structure of the seven domain polypeptide chain. Biochemistry 26: 3509–3518

    Article  CAS  Google Scholar 

  • Mangum CP, Burnett LE (1987) Response of sipunculid hemerythrins to inorganic ions and CO2. J Exp Zool 244: 59–65

    Article  CAS  Google Scholar 

  • Miller KI (1985) Oxygen equilibria of Octopus dofleini hemocyanin. Biochemistry 24: 4582–4586

    Article  PubMed  CAS  Google Scholar 

  • Mills FC, Johnson ML, Ackers GK (1976) Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry 15: 5350–5362

    Article  PubMed  CAS  Google Scholar 

  • Minton AP, Imai K (1974) The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin. Proc Natl Acad Sci USA 71: 1418–1421

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1979) Regulation of oxygen affinity of hemoglobin: influence of the structure of the globin on the heme iron. Annu Rev Biochem 48: 327–396

    Article  PubMed  CAS  Google Scholar 

  • Reem RC, Solomon EI (1987) Spectroscopic studies of the binuclear ferrous active site of deoxyhemerythrin: coordination number and probable binding ligands for the native and ligand bound forms. J Am Chem Soc 109: 1216–1226

    Article  CAS  Google Scholar 

  • Richardson DE, Reem RC, Solomon EI (1983) Cooperativity in oxygen binding to Lingula reevii hemerythrin: spectroscopic comparison to the sipunculid hemerythrin coupled binuclear iron coupled site. J Am Chem Soc 105: 7780–7781

    Article  CAS  Google Scholar 

  • Richey B, Decker H, Gill SJ (1985) Binding of oxygen and carbon monoxide to arthropod hemocyanin: an allosteric analysis. Biochemistry 24: 109–117

    Article  PubMed  CAS  Google Scholar 

  • Robert CH, Decker H, Richey B, Gill SJ, Wyman J (1987) Nesting: Hierarchies of allosteric interactions. Proc Natl Acad Sci USA 84: 1891–1895

    Article  PubMed  CAS  Google Scholar 

  • Saroff HA, Minton AP (1972) The Hill plot and the energy of interaction in hemoglobin. Science 175: 1253–1255

    Article  PubMed  CAS  Google Scholar 

  • Siezen RJ, Van Bruggen EFJ (1974) Structure and properties of hemocyanins XII: electron microscopy of dissociation products of Helix pomatia α-hemocyanin. Quaternary structure. J Mol Biol 90: 77–89

    Article  PubMed  CAS  Google Scholar 

  • Szabo A, Karplus M (1976) Analysis of the interaction of organic phosphates with hemoglobin. Biochemistry 15: 2869–2877

    Article  PubMed  CAS  Google Scholar 

  • Tiyuma I, Imai K, Shimizu K (1973) Analysis of oxygen equilibrium of hemoglobin and control mechanism of organic phosphates. Biochemistry 12: 1491–1498

    Article  Google Scholar 

  • Van Holde KE, Miller K (1982) Haemocyanins. Q Rev Biophys 15: 1–70

    Article  PubMed  Google Scholar 

  • Wyman J (1964) Linked functions and reciprocal effects in hemoglobin: a second look. Adv Protein Chem 19: 223–286

    Article  PubMed  CAS  Google Scholar 

  • Wyman J (1967) Allosteric linkage. J Am Chem Soc 89: 2202–2218

    Article  CAS  Google Scholar 

  • Wyman J (1972) On allosteric models. Curr Top Cell Regul 6: 209–226

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brouwer, M. (1992). Oxygen Carriers as Molecular Models of Allosteric Behavior. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics