Vitrification in Micropropagation

  • T. Gaspar
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 17)


Vitrification is the term generally used to characterize the hyperhydric malformations frequently affecting herbaceous and woody plants during their in vitro vegetative propagation. Glassiness, translucency, glauciness, and vitrescence are terms also used when describing this physiological disorder (Gaspar et al. 1987). The so-called vitrified or vitreous vitroplants appear turgid or hyperhydric (as if the cells were turgescent, at first sight), watery at their surface, and hypolignified. Their organs are somehow translucent, in some cases less green, and easily breakable (Jones 1976; Werner and Boe 1980).


Ethylene Production Physiol Plant Plant Cell Tissue Organ Cult Globe Artichoke Hyperosmotic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken J, Horgan KJ, Thorpe TA (1981) Influence of expiant selection on the shoot-forming capacity of juvenile tissue of Pinns radiata. Can J For Res 11: 112–117CrossRefGoogle Scholar
  2. Aitken-Christie J, Thorpe TA (1985) Clonal propagation: Gymnosperms. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Vol. 1. Academic Press, New York, pp 82–95Google Scholar
  3. Aitken-Christie J, Jones C, Bond S (1985) Wet and waxy shoots in radiata pine micropropagation. Acta Hortic 166: 93–100Google Scholar
  4. Beauchesne G (1981) Les milieux minéraux utilisés en culture in vitro et leur incidence sur l’apparition de boutures d’aspect pathologique. C R Acad Agric Paris 67: 1389–1397Google Scholar
  5. Borkowska B, Michalczuk L (1987) The physiological disorders of sour cherry cultures: necrosis and vitrification. Acta Hortic 212: 235–237Google Scholar
  6. Bornman CH, Vogelmann TC (1984) Effect of rigidity of gel medium on benzyladenine-induced adventitious bud formation and vitrification in Picea abies. Physiol Plant 61: 505–512CrossRefGoogle Scholar
  7. Böttcher I, Göring H (1987) Die Vitrifikation der Pflanzen bei der in vitro - Kultur als Infiltration problem. Biol Rundsch 25: 191–193Google Scholar
  8. Böttcher I, Zoglauer K, Göring H (1988) Induction and reversion of vitrification of plants cultured in vitro. Physiol Plant 72: 560–564Google Scholar
  9. Boxus P, Pâques M (1987) Méthode et composition de lutte contre le phénomène de vitrification au cours de la micropropagation in vitro des plantes. Demande de brevet européen 878770054.1 22.04.87 Publication 0 247 018 European Patent OfficeGoogle Scholar
  10. Boxus P, Druart P, Brasseur E (1978) Rapport d’Activités du Centre de Recherches agronomiques de Gembloux, CRA, Gembloux, pp 126–127Google Scholar
  11. Brainerd KE, Fuchigami LH (1982) Stomatal functioning of in vitro and greenhouse apple leaves in darkness, mannitol, ABA and C02. J Exp Bot 33: 388–392CrossRefGoogle Scholar
  12. Brainerd KE, Fuchigami LH, Kwiatkowski S, Clark CS (1981) Leaf anatomy and water stress of aseptically cultured Pixy plum grown under different environments. Hort Science 16: 173–175Google Scholar
  13. Chavdarov I (1986) Micropropagation and cloning in vitro of decorative plants. Genet Breed 19: 373–383Google Scholar
  14. Crèvecoeur M, Kevers C, Gaspar T (1987) A comparative biochemical and cytological characterization of normal and habituated sugarbeet calli. Biol Plant 29: 1–6CrossRefGoogle Scholar
  15. Daguin F, Letouze R (1985) Relations entre hypolignification et état vitreux chez Salix babylonica en culture in vitro. Rôle de la nutrition ammoniacale. Can J Bot 63: 324–326Google Scholar
  16. Daguin F, Letouze R (1986) Ammonium-induced vitrification in cultured tissues. Physiol Plant 66: 94–98CrossRefGoogle Scholar
  17. Davis MJ, Baker R, Hanan JJ (1977) Clonal multiplication of carnation by micropropagation. J Am Soc Hortic Sei 102: 48–53Google Scholar
  18. Debergh PC (1983) Effects of agar brand and concentration on the tissue culture medium. Physiol Plant 59: 270–276CrossRefGoogle Scholar
  19. Debergh PC, Maene LJ (1984) Preparation of tissue cultured plants for rooting and establishment in vivo. In: Novak FJ, Havel T, Dolezel K (eds) Proc Int Symp Plant Tissue Cell Cult Applic Crop Improv, Czechoslovakia Acad Sei, Prague, pp 487–495Google Scholar
  20. Debergh PC, Harbaoui Y, Lemeur R (1981) Mass propagation of globe artichoke (Cynara scolymus): evaluation of different hypotheses to overcome vitrification with special reference to water potential. Physiol Plant 53: 181–187CrossRefGoogle Scholar
  21. Dencso I (1987) Factors influencing vitrification of carnation and conifers. Acta Hortic 212: 167–176Google Scholar
  22. De Proft MP, van den Broek G, de Greef JA (1987) Involvement of ethylene on senescence and vitrification of in vitro cultured miniroses. Acta Hortic 212: 217–222Google Scholar
  23. Dhawan V, Bhojwani SS (1987) Hardening in vitro and morpho-physiological changes in the leaves during acclimatization of micropropagated plants of Leucaena leucocephala ( Lam.) de Wit. Plant Sei 53: 65–72Google Scholar
  24. Druart P, Boxus P, Liard O, Delaite B (1981) La micropropagation du Merisier à partir de la culture de méristème. In: Proc IUFRO Sect S2 01 5. Int Workshop In Vitro Cultivation for Tree Species, Fontainebleau, France, pp 101–108Google Scholar
  25. Druart Ph, Pâques M, Boxus PH (1984) Morphologie anormale semblable aux symptômes de vitrification rencontrés au cours de la micropropagation de P. glaudulosa Thurn. var. sinensis. Influence de l’AVG, de l’AIBA et d’AgNOa. Arch Int Physiol Biochim 92 (1): V22–V23Google Scholar
  26. Fukuda H, Komamine A (1985) Cytodifferentiation. In: Vasil IK (ed) Cell Culture and somatic cell genetics of plants. Vol. 2. Academic Press, New York, pp 149–212Google Scholar
  27. Gaspar TH (1986) Integrated relationships of biochemical and physiological peroxidase activities. In: Greppin H, Penel C, Gaspar TH (eds) Molecular and physiological aspects of plant peroxidases. Univ Geneva, Switzerland, pp 455–468Google Scholar
  28. Gaspar TH, Kevers C (1985) Cobalt prevention of vitrification process in carnation. Plant Physiol 77 (Suppl): 13Google Scholar
  29. Gaspar TH, Kevers C, Debergh P, Maene L, Paques M, Boxus PH (1987) Vitrification: morphological, physiological, and ecological aspects. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Vol. 1. General principles and biotechnology. Martinus Nijhoff, Dordrecht, pp 152–166Google Scholar
  30. Gaspar TH, Kevers C, Penel C, Crevecoeur M, Greppin H (1988) Biochemical characterization of normal and habituated sugarbeet calli. Relationship with anatomy, habituation and organogenesis. Postdamer Forschungen B57: 20–30Google Scholar
  31. Gaspar TH, Kevers C, Bouillenne H, Maziere Y, Barbe JP (1989) Ethylene production in relation to rose micropropagation through axillary budding. In: Clijsters H et al. (eds) Biochemical and physiological aspects of ethylene production in lower and higher plants. Kluwer Acad, Dordrecht, pp 303–312CrossRefGoogle Scholar
  32. Gersani M, Leshem B, Sachs T (1986) Impaired polarity in abnormal plant development. J Plant Physiol 123: 91–95Google Scholar
  33. Grout BWW, Aston MJ (1978) Modified leaf anatomy of cauliflower plantlets regenerated from meristem culture. Ann Bot 42: 993–995Google Scholar
  34. Hackett WP, Anderson JM (1967) Aseptic multiplication and maintenance of differential carnation shoot tissue derived from shoot apices. Proc Am Soc Hortic Sei 90: 365–369Google Scholar
  35. Hakkaart FA, Versluijs JM (1983) Some factors affecting glassiness in carnation meristem tip cultures. Neth J Plant Pathol 89: 7–53CrossRefGoogle Scholar
  36. Hauzinska E (1974) L’organogenèse dans le tissu de cal de l’oeillet (Dianthiis caryophylhis L.) dans les conditions de culture in vitro. In: Proc 19th Hortic Congr, Warsaw 1A: 60Google Scholar
  37. Hegedus P, Phan CT (1983) Actions de phénols sur les malformations observées chez les porte–greffes de pommiers M-26 et 0–3 cultivés in vitro. Rev Can Biol Exp 42: 33–38Google Scholar
  38. Hegedus P, Phan CT (1987) Activities of five enzymes of the phenolic metabolism on rooted and acclimated vitreous plants in relation with phenolic treatments. Acta Hortic 212: 211–216Google Scholar
  39. Heller R (1969) Biologie Végétale II. Nutrition et metabolisme. Masson et Cie, Paris, pp 415–424Google Scholar
  40. Installe P, Cesar G, Hofinger M, Gaspar TH (1985) Evolution dans la composition en macroéléments des milieux de culture pour tissus végétaux. Meded Fac Landbouwwet Rijksuniv Gent 50/2a:317–325Google Scholar
  41. John A (1986) Vitrification in Sitka spruce cultures. In: Withers L, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworth, London, pp 167–174Google Scholar
  42. John A, Pearson DJ (1985) Vitrification in Sitka spruce (Picea sitchensis) cultures. News Bull Br Plant Growth Regul Group 7: 35Google Scholar
  43. Jones OP (1976) Effects of phoridzin and phloroglucinol on apple shoots. Nature 262: 393–393CrossRefGoogle Scholar
  44. Kevers C, Gaspar TH (1985a) Soluble, membrane and cell wall peroxidases, phenylalanine ammonialyase, and lignin changes in relation to vitrification of carnation tissues cultured in vitro. J Plant Physiol 118: 41–48Google Scholar
  45. Kevers C, Gaspar TH (1985b) Vitrification of carnation in vitro: changes in ethylene production, ACC level and capacity to convert ACC to ethylene. Plant Cell Tissue Organ Cult 4: 215–223Google Scholar
  46. Kevers C, Gaspar TH (1986) Vitrification of carnation in vitro: changes in water content, extracellular space, air volume, and ion levels. Physiol Vég 24: 647–653Google Scholar
  47. Kevers C, Coumans M, Coumans-Gilles MF, Gaspar TH (1984) Physiological and biochemical events leading to vitrification in plants cultured in vitro. Physiol Plant 61: 69–74CrossRefGoogle Scholar
  48. Kevers C, Prat R, Gaspar TH (1987) Vitrification of carnation in vitro: changes in cell wall mechanical properties, cellulose and lignin content. Plant Growth Regul 5: 59–66CrossRefGoogle Scholar
  49. Kevers C, Goldberg R, Chu-Ba J, Gaspar TH (1988) Composition of the walls of stem and leaves of vitrifying carnation. Biol Plant 30: 219–223CrossRefGoogle Scholar
  50. Lamproye A, Kevers C, Gaspar TH (1986) Changes in peroxidase activities, phenol content, and ethylene production in callus-forming basal part of sugarbeet petiole. Bull Groupe Polyphénols ( C R Journées Int d’Etude, Montpellier ) 13: 232–234Google Scholar
  51. Lavee S, Messer G (1969) The effect of growth-regulating substances and light on olive callus growth in vitro. J Exp Bot 20: 604–614CrossRefGoogle Scholar
  52. Leonhardt W, Kandeler R (1987) Ethylene accumulation in culture vessels, a reason for vitrification? Acta Hortic 212: 223–229Google Scholar
  53. Leshem B (1983a) Growth of carnation meristems in vitro: anatomical structure of abnormal plantlets and the effect of agar concentration in the medium on their formation. Ann Bot 52: 413–415Google Scholar
  54. Leshem B (1983b) The carnation succulent plantlet, a stable teratological growth. Ann Bot 52: 873–876Google Scholar
  55. Leshem B, Sachs T (1985) Vitrified Dianthus teratoma in vitro due to growth factor imbalance. Ann Bot 56: 613–617Google Scholar
  56. Leshem B, Shaley DP, Izhar S (1988) Cytokinin as an inducer of vitrification in melon. Ann Bot 61: 255–260Google Scholar
  57. Letouzé R, Daguin F (1983) Manifestation spontanée etaléatoire d’une croissance anormale en culture in vitro. Recherche de marqueurs métaboliques. Rev Can Biol Exp 42: 23–28Google Scholar
  58. Letouzé R, Daguin F (1987) Control of vitrification and hypolignification process in Salix babylonica cultured in vitro. Acta Hortic 212: 185–191Google Scholar
  59. Maene L (1985) Optimalisering van de commerciële vermeerdering van planten in vitro. Meded. Centr Studie Voortplanting bij Tuinbouwgewassen, IWONL, Gent, 47 pGoogle Scholar
  60. Miedema P (1984) The effects of growth regulators on vitrification in shoot cultures of Beta vulgaris. Acta Bot Neerl 33: 375Google Scholar
  61. Monette PL (1983) Influence of size of culture vessel on in vitro proliferation of grape in a liquid medium. Plant Cell Tissue Organ Cult 2:327–332 Google Scholar
  62. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  63. Navatel JC (1982) Problèmes liés à la production de porte-greffe d’arbres fruitiers par multiplication in vitro. Fruits 37: 331–336Google Scholar
  64. Orlikowska T (1987) Vitrification problem in the in vitro culture of fruit tree rootstocks. Acta Hortic 212: 239–244Google Scholar
  65. Paques M, Boxus P (1984) Comparative study of vitreous and nonvitreous plantlets of apple rootstock M-26 cultivated in vitro Abstr Book, 4th Congr Fed Eur Soc Plant Physiol, Strasbourg, pp 282–283Google Scholar
  66. Pâques M, Boxus PH (1986) Utilization of a hydrolysed agar extract to prevent vitrification of the apple M26 rootstock, cultivated in vitro Arch Int Physiol Biochim 94:pp 33Google Scholar
  67. Pâques M, Boxus PH (1987a) Vitrification: review of literature. Acta Hortic 212: 155–166Google Scholar
  68. Pâques M, Boxus PH (1987b) Vitrification: a phenomenon related to tissue water content? Acta Hortic 212: 245–252Google Scholar
  69. Pasqualetto PL, Zimmermann RH, Fordham I (1986) Gelling agent and growth regulator effects on shoot vitrification of Gala apple in vitro. J Am Soc Hortic Sci 111: 976–980Google Scholar
  70. Phan CT, Hegedus P (1986) Possible metabolic basis for the development anomaly observed in in vitro culture, called “vitreous plants”. Plant Cell Tissue Organ Cult 6: 83–94CrossRefGoogle Scholar
  71. Phan CT, Letouze R (1983) A comparative study of chlorophyll, phenolic and protein contents and of hydroxycinnamate: CoA ligase activity of normal and vitreous plants (Prunus avium L.) obtained in vitro. Plant Sci Lett 31: 323–327CrossRefGoogle Scholar
  72. Phillips DJ, Matthews GJ (1964) Growth and development of carnation shoot tips in vitro. Bot Gaz 125: 7–12CrossRefGoogle Scholar
  73. Quoirin M, Lepoivre P (1977) Etude de milieux adaptés aux cultures in vitro de Pruniis. Acta Hortic 78: 437–442Google Scholar
  74. Riffaud JL, Cornu D (1981) Utilisation de la culture in vitro pour la multiplication de merisiers adultes (Prunus avium L.) sélectionnés en forêt. Agronomie 1: 633–640CrossRefGoogle Scholar
  75. Roberts LW, Miller AR (1982) Ethylene and xylem differentiation. What’s New in Plant Physiol 13: 13–16Google Scholar
  76. Rugini E, Verma DC (1983) Micropropagation of difficult to propagate almond (Prunus amydalus) cultivar. Plant Sci Lett 28: 273–281Google Scholar
  77. Rugini E, Tarmi P, Rossodivita ME (1987) Control of shoot “vitrification” of almond and olive grown in vitro. Acta Hortic 212: 177–183Google Scholar
  78. Sutter EG (1985) Morphological, physical and the chemical characteristics of epicuticular wax on ornamental plants regenerated in vitro. Ann Bot 55: 321–329Google Scholar
  79. Sutter E, Langhans RW (1979) Epicuticular wax formation on carnation plantlets regenerated from shoot tip culture. J Am Soc Hortic Sci 104: 493–496Google Scholar
  80. Vieitez AM, Ballester A, San-Jose MC, Vieitez E (1985) Anatomical and chemical studies of vitrified shoots of chestnut regenerated in vitro. Physiol Plant 65: 177–184CrossRefGoogle Scholar
  81. Vieitez AM, Ballester A, San-Jose MC, Vieitez E (1987) Vitrification in chestnut shoots regenerated in vitro. Acta Hortic 212: 231–234Google Scholar
  82. Vieth J, Morisset C, Lamond M (1983) Histologie de plantules vitreuses de Pyrus malus cv. M 26 et de Pelargonium peltatum cv. Chester Frank, issues de la culture in vitro ( Etude préliminaire ). Rev CanBiol Exp 42: 29–32Google Scholar
  83. Von Arnold S, Ericksson T (1984) Effect of agar concentration on growth and anatomy of adventitious shoots of Picea abies L. Plant Cell Tissue Organ Cult 3: 257–264CrossRefGoogle Scholar
  84. Wardle K, Dobbs EB, Short KC (1983) In vitro acclimatization of aseptically cultured plantlets to humidity. J Am Soc Hortic Sci 108: 386–389Google Scholar
  85. Werker E, Leshem B (1987) Structural changes during vitrification of carnation plantlets. Ann Bot 59: 377–385Google Scholar
  86. Werner EM, Boe AA (1980) In vitro propagation of Malling–7 apple rootstocks. Hort Science 15: 509–510Google Scholar
  87. Wilkins CP, Dodds JH (1983) Tissue culture propagation of temperate fruit trees. In: Dodds JH (ed) Tissue culture of trees. Croom Helm, London, pp 56–79Google Scholar
  88. Ziv M (1986) In vitro hardening and acclimatization of tissue culture plants. In: Withers L, Alderson P (eds) Plant tissue culture and its agricultural applications. Butterworth, London, pp 187–196Google Scholar
  89. Ziv M, Meir G, Halevy AH (1983) Factors influencing the production of hardened glaucous carnation plantlets in vitro. Plant Cell Tissue Organ Cult 2: 55–65CrossRefGoogle Scholar
  90. Ziv M, Schwartz A, Fleminger D (1987) Malfunctioning stornata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sci 52: 127–134CrossRefGoogle Scholar
  91. Zuccherelli G (1979) Moltiplicazione in vitro dei portainnesti clonali del pesco. Frutticoltura 41: 15–20Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • T. Gaspar
    • 1
  1. 1.Hormonologie fondamentale et appliquée, Institut de Botanique (B 22)Université de LiègeLiègeBelgium

Personalised recommendations