Skip to main content

Graft Compatibilities in Vitro

  • Chapter
High-Tech and Micropropagation I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 17))

Abstract

Micrografting is a means of propagation that involves fusing small pieces of tissue, either in vivo or in vitro. Although relatively new and cumbersome, micrografting has already produced startling results. For example, micrografting has been used to produce healthy citrus orchards and rejuvenate trees, and will be a valuable tool for investigating the transition from juvenile to adult growth (see review by Jonard 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball EA (1969) Histology of mixed callus cultures. Bull Torrey Bot Club 96: 52 - 59

    Article  Google Scholar 

  • Ball EA (1971) Growth of plant tissue upon a substrate of another kind of tissue. I. Qualitative observations. Z Pflanzenphysiol 65: 140 - 158

    CAS  Google Scholar 

  • Bevington KB (1976) Development of union abnormalities in grafts between lemon (Citrus limon) and Poncirus trifoliata. Aust J Agric Res 27: 661 - 668

    Article  Google Scholar 

  • Breen PJ, Muraoka T (1975) Seasonal nutrient levels and peach/plum graft incompatibility. J Amer Soc Hort Sci 100: 339 - 342

    CAS  Google Scholar 

  • Clarke AE, Knox RB (1978) Cell recognition in flowering plants. Q Rev Biol 53: 3 - 28

    Article  CAS  Google Scholar 

  • Clarke AE, Knox RB (1979) Plant and immunity. Dev Comp Immunol 3: 571 - 589

    Article  PubMed  CAS  Google Scholar 

  • Copes DL (1978) Anatomical symptoms of graft incompatibility in Pinus monticola and P. ponderosa. Silvae Genet 29: 77 - 82

    Google Scholar 

  • Deloire A, Hebânt C (1982) Peroxidase activity and lignification at the interface between stock and scion of compatible and incompatible grafts of Capsicum on Lycopersicon. Ann Bot 49: 887 - 891

    CAS  Google Scholar 

  • Fujii T, Nito N (1972) Studies on the compatibility of grafting fruit trees. I. Callus fusion between the rootstock and scion. J Jpn Soc Hortic Sci 41: 1-10

    Google Scholar 

  • Gautheret RJ (1945) Une voie nouvelle en biologie végétale. La culture des tissus. 3rd edn, L’Avenir de la Science-21. Gallimard

    Google Scholar 

  • Gur A (1972) Chemical control of pear-quince graft incompatibility. In: Proc Symp on “pear growing.” 1972 September 4-8; Fruit Breeding Station, Angers, France: International Society for Horticultural Science, Fruit Section, Working Group on Pear, 1972, pp 253 - 264

    Google Scholar 

  • Gur A, Blum A (1972) The role of cyanogenic glycoside in incompatibility between peach scions and almond rootstocks. Hort Res 13: 1 - 10

    Google Scholar 

  • Gur A, Samish RM, Lifshitz E (1968) The role of the cyanogenic glycoside of the quince in the incompatibility between pear cultivars and quince rootstocks. Hort Res 8: 113 - 134

    CAS  Google Scholar 

  • Hartmann HT, Kester DE (1975) Plant propagation: principles and practices, 3rd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Hartmann HT, Kofranek AM, Rubatzky VE, Flocker WJ (1988) Plant science: growth, development, and utilization of cultivated plants, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Herrero J (1951) Studies of compatible and incompatible graft combinations with special reference to hardy fruit trees. J Hortic Sci 26: 186 - 237

    Google Scholar 

  • Jeffree CE, Yeoman MM (1983) Development of intercellular connections between opposing cells in a graft union. New Phytol 93: 491 - 509

    Article  Google Scholar 

  • Juniper BE, Jeffree CE (1983) Plant surfaces. Edward Arnold, London

    Google Scholar 

  • Knox RB, Clarke AE (1980) Discrimination of self and non-self in plants. In: Marchalonic JJ, Cohen N (eds) Self/non-self discrimination, contemporary topics in immunology, vol 9. Plenum, New York, pp 1 - 36

    Google Scholar 

  • Mahlsted JP, Haber ES (1957) Plant propagation. John Wiley, New York

    Google Scholar 

  • Malik NSA (1983) Grafting experiments on the nature of the decline in N2 fixation during fruit development in soybean. Physiol Plant 57: 561 - 564

    Article  CAS  Google Scholar 

  • Moore R (1982) Graft development in Kalanchôe blossfeldiana. J Exp Bot 33: 533 - 540

    Article  Google Scholar 

  • Moore R (1984a) A model for graft compatibility-incompatibility in higher plants. Am J Bot 71: 752 - 758

    Article  Google Scholar 

  • Moore R (1984b) The role of direct cellular contact in the formation of compatible autografts in Sedum telephoides. Ann Bot 54: 127 - 133

    Google Scholar 

  • Moore R (1984c) Cellular interactions during the formation of approach grafts in Sedum telephoides (Crassulaceae). Can J Bot 62: 2476 - 2484

    Article  Google Scholar 

  • Moore R (1984d) Ultrastructural aspects of graft incompatibility between bear and quince in vitro. Ann Bot 53: 447 - 451

    Google Scholar 

  • Moore R (1985) Studies of vegetative compatibility-incompatibility in higher plants. VII. Influences of individual organs on graft development. Tex J Sci 37: 201 - 211

    Google Scholar 

  • Moore R (1986) Graft incompatibility between pear and quince: the influence of metabolites of Cydonia oblonga on suspension cultures of Pyrus communis. Am J Bot 73: 1 - 4

    Article  Google Scholar 

  • Moore R, Walker DB (1981a) Studies of vegetative compatibility-incompatibility in higher plants. I. A structural study of a compatible autograft in Sedum telephoides ( Crassulaceae ). Am J Bot 68: 820-830

    Google Scholar 

  • Moore R, Walker DB (1981b) Studies of vegetative compatibility-incompatibility in higher plants. II. A structural study of an incompatible heterograft between Sedum telephoides (Crassulaceae) and Solanum pennellii ( Solanaceae ). Am J Bot 68: 831-842

    Google Scholar 

  • Moore R, Walker DB (1981c) Studies of vegetative compatibility-incompatibility in higher plants. III. The involvement of acid phosphatase in the lethal cellular senescence associated with an incompatible heterograft. Protoplasma 109: 317-334

    Google Scholar 

  • Moore R, Walker DB (1983) Studies of vegetative compatibility-incompatibility in higher plants. VI. Grafting of Sedum and Solanum callus tissue in vitro. Protoplasma 115: 114 - 121

    Article  Google Scholar 

  • Muller-Stoll WR (1938) Versuche iiber die Verwendbarkeit der B-Indolylessigsaure als verwachsungsôrderndes Mittel in der Rebenveredlung. Angew Bot 20: 218 - 238

    CAS  Google Scholar 

  • Muzik IJ (1958) Role of parenchyma cells in graft union in Vanilla orchid. Science 127: 82

    Article  PubMed  CAS  Google Scholar 

  • Parkinson M, Yeoman MM (1982) Graft formation in cultured, explanted internodes. New Phytol 91: 711 - 719

    Article  CAS  Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. In: Woolhouse HW (ed) Advances in botanical research, vol 9. Academic Press, London, pp 151 - 262

    Google Scholar 

  • Shimomura T, Fuzihara K (1977) Physiological study of graft union formation in cactus. II. Role of auxin on vascular connection between stock and scion. J Jpn Soc Hortic Sei 45: 397-406

    Google Scholar 

  • Shimomura T, Fuzihara K (1978) Prevention of auxin-induced vascular differentiation in wound callus by surface-to-surface adhesion between calluses of stock and scion in cactus grafts. Plant Cell Physiol 19: 877 - 886

    Google Scholar 

  • Stoddard FL, McCully ME (1979) Histology of the development of the graft union in pea roots. Can J Bot 57: 1486 - 1501

    Article  Google Scholar 

  • Stoddard FL, McCully ME (1980) Effects of excision of stock and scion organs on the formation of the graft union in Coleus: a histological study. Bot Gaz 141: 401 - 412

    Article  Google Scholar 

  • Yeoman MM, Kilpatrick DC, Miedzybrodzka MB, Gould AR (1978) Cellular interactions during graft formation in plants, a recognition phenomenon? Symp Soc Exp Biol 32: 139 - 160

    PubMed  CAS  Google Scholar 

  • Zeevaart JAD (1982) Transmission of the floral stimulus from a long-short-day plant, Bryophyllum daigremontianum, to the short-long-day plant Echeveria harmsii. Ann Bot 49: 549 - 552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, R. (1991). Graft Compatibilities in Vitro. In: Bajaj, Y.P.S. (eds) High-Tech and Micropropagation I. Biotechnology in Agriculture and Forestry, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76415-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76415-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76417-2

  • Online ISBN: 978-3-642-76415-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics