Skip to main content

Numerical Evaluation of Candidate Wavefunctions for High-Temperature Superconductivity

  • Conference paper
Computer Simulation Studies in Condensed Matter Physics III

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 53))

  • 133 Accesses

Abstract

This article reviews the variational Monte Carlo approach to the Hubbard model and the problem of high-temperature superconductivity. An historical introduction to the conceptual background of the problem is given, and the basic technical details of the method are summarized. The chief physical results, particularly the prediction of antiferromagnetic fluctuations in almost localized Fermi liquids, are outlined. The consequences for high-temperature superconductivity are drawn, and future prospects are speculated upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hubbard, Proc. Roy. Soc. A276, 238 (1964)

    ADS  Google Scholar 

  2. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  ADS  MATH  Google Scholar 

  3. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

    Article  ADS  Google Scholar 

  4. M. Takahashi, J. Phys. Soc. Japan 51, 3425 (1982)

    ADS  Google Scholar 

  5. Y. Fang, A. Ruckenstein, E. Dagotto, and S. Schmitt-Rink. Phys. Rev. B40, 7406 (1989)

    ADS  Google Scholar 

  6. M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  7. W. F. Brinkman and T. M. Rice, Phys. Rev. B2, 4302 (1970)

    ADS  Google Scholar 

  8. P. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  9. T. A. Kaplan, P. Horsch, and P. Fulde, Phys. Rev. Lett., 49, 889 (1982)

    Article  ADS  Google Scholar 

  10. P. Horsch and T. A. Kaplan, J. Phys, C 16, L1203 (1983)

    Article  ADS  Google Scholar 

  11. D. Haldane, Phys. Rev. Lett. 60, 635 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Shastry, Phys. Rev. Lett. 60, 639 (1988)

    Article  ADS  Google Scholar 

  13. P. W. Anderson, Phys. Rev. 115, 2 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B35, 381 (1970)

    Google Scholar 

  15. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1665 (1968)

    Article  Google Scholar 

  16. G. Aeppli, A. Goldman, G. Shirane, E. Bucher, and M. Lux-Steiner, Phys. Rev. Lett. 58, 808 (1987)

    Article  ADS  Google Scholar 

  17. H. Shiba, J. Phys. Soc. Japan 55, 2765 (1986)

    Article  ADS  Google Scholar 

  18. H. Yokoyama and H. Shiba J. Phys. Soc. Japan 56, 3570 (1987)

    Article  ADS  Google Scholar 

  19. F. C. Zhang and T. M. Rice, Phys. Rev. B37, 3759 (1988)

    ADS  Google Scholar 

  20. C. Gros, R. Joynt, and T. M. Rice, Z. Phys. B68, 425 (1987)

    Article  ADS  Google Scholar 

  21. C. Gros, Phys. Rev. B38, 931 (1988)

    ADS  Google Scholar 

  22. H. Yokoyama and H. Shiba, J. Phys. Soc. Japan 57, 2482 (1988)

    Article  ADS  Google Scholar 

  23. T. K. Lee and S. Feng, Phys. Rev. B38, 11809 (1988)

    ADS  Google Scholar 

  24. S. Coppersmith and C. Yu, Phys. Rev. B39, 11464 (1989)

    ADS  Google Scholar 

  25. S. Liang and N. Trivedi, Phys. Rev. Lett. 64, 232 (1989)

    Article  ADS  Google Scholar 

  26. C. G. Olson,(private communication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joynt, R. (1991). Numerical Evaluation of Candidate Wavefunctions for High-Temperature Superconductivity. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed Matter Physics III. Springer Proceedings in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76382-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76382-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76384-7

  • Online ISBN: 978-3-642-76382-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics