Spin vs Charge Asymmetry in the Dimers of the Si(100)-2×1 Surface

  • E. Artacho
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 62)


Spin polarization in the dimers is proposed instead of charge and geometric asymmetry for the Si(100)-2×1 surface. Current symmetric and asymmetric dimer models are considered. Core level shift and total energy calculations support this proposal. An energy gain of about 0.5 eV per surface atom is obtained by including spin correlations in the calculations. Electronic charge and spin densities, surface states bands and spin-spin correlations are presented. All these strongly suggest that the dimers buckling is much smaller than predicted by previous spin independent calculations.


Spin Correlation Dime Model Spin Asymmetry Spin Arrangement Symmetric Dime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Schlier and H. E. Farnsworth, J. Chem. Phys. 30, 917 (1959).CrossRefGoogle Scholar
  2. 2.
    R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett. 55, 1303 (1985)CrossRefGoogle Scholar
  3. R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. B 24, 5343 (1986)Google Scholar
  4. R. J. Hamers and U. K. Kphler, J. Vac. Sci. Technol. A7, 2854 (1989).Google Scholar
  5. 3.
    R. Pinchaux, M. Sauvage-Simkin, J. Massies, N. Jedrecy, N. Greiser and V. H. Etgens, to be published.Google Scholar
  6. 4.
    D. H. Rich, T. Miller, and T.-C. Chiang, Pys. Rev. B 37, 3124 (1988).CrossRefGoogle Scholar
  7. 5.
    L. S. O. Johansson, R. I. G. Uhrberg, P. Mårtensson, and G. V. Hansson, Phys. Rev. B 42, 1305 (1990).CrossRefGoogle Scholar
  8. 6.
    E. Artacho and F. Yndurain, Pys. Rev. Lett. 62, 2491 (1989).CrossRefGoogle Scholar
  9. 7.
    D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979)CrossRefGoogle Scholar
  10. D. J. Chadi, J. Vac. Sci. Technol. 16, 1290 (1979).CrossRefGoogle Scholar
  11. 8.
    M. T. Yin and M. L. Cohen, Phys. Rev. B 24, 2303 (1981).CrossRefGoogle Scholar
  12. 9.
    A. Redondo and W. A. Goddard, J. Vac. Teclinol. 21, 344 (1982).CrossRefGoogle Scholar
  13. 10.
    K. C. Pandey, in Proceedings of the 17th ICPS, edited by D. J. Ckadi and W. A. Harrison (Springer, Berlin, 1984), p.55.Google Scholar
  14. 11.
    Z. Zhu, N. Shima and M. Tsukada, Phys. Rev. B 40, 11868 (1989).CrossRefGoogle Scholar
  15. 12.
    I. P. Batra, Phys. Rev. B 41, 5048 (1990).CrossRefGoogle Scholar
  16. 13.
    S. Doniach and M. Šunjić, J. Phys. C 3, 285 (1970).CrossRefGoogle Scholar
  17. 14.
    E. Artacho and F. Ynduráin, accepted in Phys. Rev. B.Google Scholar
  18. 15.
    P. Ordejón, E. Martínez, and F. Ynduráin, Phys. Rev. B 40, 12416 (1989)CrossRefGoogle Scholar
  19. E.Artacho and F.Yndurain, to be published.Google Scholar
  20. 16.
    F. J. Himpsel and Th. Fauster, J. Vac. Sci. Technol. A 2, 815 (1983).CrossRefGoogle Scholar
  21. 17.
    R. R. P. Singh, M. P. Gelfand, and D. A. Huse, Phys. Rev. Lett. 61, 2484 (1988).CrossRefGoogle Scholar
  22. 18.
    L. Miláns del Bosch, E. Artacho, and F. Ynduráin, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • E. Artacho
    • 1
  1. 1.Departamento de Física de la Materia Condensada, C-IIIUniversidad Autónoma de MadridMadridSpain

Personalised recommendations