Skip to main content

Central Baroreceptor Reflex Pathways

  • Chapter
Baroreceptor Reflexes

Abstract

Since the first description of terminal endings of vagal and glossopharyngeal afferent fibres in dorsal, medial, and ventral subnuclei of the solitary tract by Cajal [23] numerous morphological and electrophysiological data on this subject have been published (for reference see [168]). As far as the projection of baroreceptor afferents within vagal and glossopharyngeal nerves is concerned most of these studies have been confronted with the problem that not only baroreceptor afferents are present. Even with the new tracer method of transganglionic transport of horseradish peroxidase (HRP) applied to the carotid sinus nerve in the cat [13,40,138] or rat [159] or the aortic nerve in the cat [81], the results must include baro- as well as chemoreceptor afferents. If consideration is restricted to those cases in which a pure baroreceptor nerve can be isolated, e.g., the aortic nerve of the rabbit [184] in which single, functionally identified baroreceptor afferent fibres were stained by HRP [35], then there is general agreement as to the location of terminal endings on the ipsilateral side of the medulla within the dorsomedial region of the solitary tract immediately ventral to the gracile nucleus, the medial solitary nucleus and the commissural nucleus. The highest density of terminal endings is located at the level of the obex. In the rabbit these endings can be demonstrated up to about 1.5 mm cranial and 0.5 mm caudal to the obex. Branches of the afferent fibres cross immediately caudal to the obex, and dorsal to the central canal, in the commissural nucleus of the contralateral site. As described by Cajal, “afferent fibres from the solitary tract do not enter motor nuclei” [23], and the terminal endings of baroreceptor afferents do not project to the dorsal motor nucleus of the vagus or the nucleus ambiguus [184] (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achari NK, Downman CBB (1970) Autonomic effector responses to stimulation of nucleus fastigius. J Physiol (Lond) 210: 637–650

    CAS  Google Scholar 

  2. Adrian ED, Bronk DW, Phillips G (1932) Discharges in mammalian sympathetic nerves. J Physiol (Lond) 74:8–115–133

    Google Scholar 

  3. Agarwal SK, Gelsema AJ, Calaresu FR (1990) Inhibition of rostral VLM by baroreceptor activation is relayed through caudal VLM. Am J Physiol 258: R1271–R1278

    PubMed  CAS  Google Scholar 

  4. Amendt K, Czachurski J, Dembowsky K, Seller H (1978) Neurones within the “chemosensitive area” on the ventral surface of the brainstem which project to the inermediolateral column. Pflügers Arch 375: 289–292

    PubMed  CAS  Google Scholar 

  5. Amendt K, Czachurski J, Dembowsky K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1: 103–117

    PubMed  CAS  Google Scholar 

  6. Bach LMN (1952) Relationship between bulbar respiratory, vasomotor and somatic facilitatory and inhibitory areas. Am J Physiol 171: 417–435

    PubMed  CAS  Google Scholar 

  7. Banks D, Harris MC (1987) Activation within dorsal medullary nuclei following stimulation in the hypothalamic paraventricular nucleus in rats. Pflügers Arch 408: 619–627

    PubMed  CAS  Google Scholar 

  8. Barman SM, Gebber GL (1984) Spinal interneurons with sympathetic nerve-related activity. Am J Physiol 247: R761–R767

    PubMed  CAS  Google Scholar 

  9. Barman SM, Gebber GL (1985) Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol 53 (6): 1551 - 1566

    PubMed  CAS  Google Scholar 

  10. von Baumgarten R, von Baumgarten A, Schäfer KP (1957) Beitrag zur Lokalisationsfrage bulboreticulärer respiratorischer Neurone der Katze. Pflügers Arch 264: 217–227

    Google Scholar 

  11. Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190: 259–282

    PubMed  CAS  Google Scholar 

  12. Bennett JA, Kidd C, Latif AB, McWilliam PN (1981) A horseradish peroxidase study of vagal motoneurones with axons in cardiac and pulmonary branches of the cat and dog. Q J Exp Physiol 66: 145–154

    PubMed  CAS  Google Scholar 

  13. Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14: 153–158

    PubMed  CAS  Google Scholar 

  14. Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262: 546–562

    PubMed  CAS  Google Scholar 

  15. Blessing WW (1989) Baroreceptor-vasomotor reflex after N-methyl-D-aspartate receptor blockade in rabbit caudal ventrolateral medulla. J Physiol (Lond) 416: 67–78

    CAS  Google Scholar 

  16. Blessing WW, Li YW (1989) In: Ciriello J, Caverson MM, Polosa C (eds) Progress in brain research, vol 81. Elsevier, Amsterdam, pp 83–97

    Google Scholar 

  17. Blessing WW, Reis DJ (1982) Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: relationship to the area containing Al noradrenergic cells. Brain Res 253: 161–171

    PubMed  CAS  Google Scholar 

  18. Blessing WW, Chalmers JP, Howe PRC (1978) Distribution of catcholaminecontaining cell bodies in the rabbit central nervous system. J Comp Neurol 179: 407–424

    PubMed  CAS  Google Scholar 

  19. Blessing WW, Goodchild AK, Dampney RAL, Chalmers JP (1981) Cell groups in the lower brain stem of the rabbit projecting to the spinal cord, with special reference to catecholamine-containing neurons. Brain Res 221: 35–55

    PubMed  CAS  Google Scholar 

  20. Brown DL, Guyenet PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247: R1009–R1016

    PubMed  CAS  Google Scholar 

  21. Brown DL, Guyenet PG (1985) Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res 56: 359–369

    PubMed  CAS  Google Scholar 

  22. Brunner MJ, Greene AS, Kallman CH, Shoukas A A (1984) Interaction of canine- carotid sinus and aortic arch baroreflexes in the control of total peripheral resistance. Circ Res 55: 740–750

    PubMed  CAS  Google Scholar 

  23. Cajal SR (1909) Histologie du système nerveux de l’homme et des vertèbres, vol I. Raycar, Madrid

    Google Scholar 

  24. Calaresu FR, Pearce JW (1965) Effects on heart rate of electrical stimulation of medullary vagal structures in the cat. J Physiol (Lond) 176: 241–251

    CAS  Google Scholar 

  25. Calaresu FR, Yardley CP (1988) Medullary basal sympathetic tone. Am Rev Physiol 50: 511–524

    CAS  Google Scholar 

  26. Campagnole-Santos MJ, Diz DI, Ferrario CM (1988) Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarii. Hypertension II [Suppl I]: 167–171

    Google Scholar 

  27. Ciriello J, Calaresu FR (1980) Distribution of vagal cardioinhibitory neurons in the medulla of the cat. Am J Physiol 238: R57–R64

    PubMed  CAS  Google Scholar 

  28. Ciriello J, Caverson MM, Polosa C (1986) Function of the ventrolateral medulla in the control of the circulation. Brain Res Rev 11: 359–391

    Google Scholar 

  29. Coote JH (1988) The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol 110: 147–285

    PubMed  CAS  Google Scholar 

  30. Coote JH, MacLeod VH (1974) The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol (Lond) 241: 453–475

    CAS  Google Scholar 

  31. Coote JH, MacLeod VH (1974) Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J Physiol (Lond) 241: 477–496

    CAS  Google Scholar 

  32. Coote JH, MacLeod VH, Fleetwood-Walker SM, Gilbey MP (1981) Baroreceptor inhibition of sympathetic activity at a spinal site. Brain Res 220: 81–93

    PubMed  CAS  Google Scholar 

  33. Cox GE, Jordan D, Moruzzi P. Schwaber JS, Spyer KM Turner SA (1986) Amygdaloid influences on brainstem neurones in the rabbit. J Physiol (Lond) 381: 135–148

    CAS  Google Scholar 

  34. Criscione L, Reis DJ, Talman WT (1983) Cholinergic mechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat. Eur J Pharmacol 88: 47–55

    PubMed  CAS  Google Scholar 

  35. Czachurski J, Dembowsky K, Seller H, Nobiling R, Taugner R (1988) Morphology of electrophysiologically identified baroreceptor afferents and second order neurones in the brainstem of the cat. Arch Ital Biol 126: 129–144

    PubMed  CAS  Google Scholar 

  36. Czachurski J, Lackner KJ, Ockert D, Seller H (1982) Localization of neurones with baroreceptor input in the medial solitary nucleus by means of intracellular application of horseradish peroxidase in the cat.Neurosci Lett 28: 133–137

    CAS  Google Scholar 

  37. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand 62 [Suppl 232]: 3–24

    Google Scholar 

  38. Dampney RAL, Goodchild AK, Robertson LG, Montgomery W (1982) Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res 249: 223–235

    PubMed  CAS  Google Scholar 

  39. Dampney RAL, Czachurski J, Dembowsky K, Goodchild AK, Seller H (1987) Afferent connections and spinal projections of the pressor region in the rostral ventrolateral medulla of the cat. J Auton Nerv Syst 20: 73–86

    PubMed  CAS  Google Scholar 

  40. Davies RO, Kalia M (1981) Carotid sinus nerve projections to the brain stem in the cat. Brain Res Bull 6: 531–541

    PubMed  CAS  Google Scholar 

  41. Day TA, Ro A, Renaud LP (1983) Depressor area within caudal ventrolateral medulla of the rat does not correspond to the Al catecholamine cell group. Brain Res 279: 299–302

    PubMed  CAS  Google Scholar 

  42. Dembowsky K (1987) Untersuchungen zur Morphologie und Funktion sympathischer präganglionärer Neurone. Habilitationsschrift, University of Heidelberg

    Google Scholar 

  43. Dembowsky K, Czachurski J, Seller H (1985) An intracellular study of the synaptic input to sympathetic preganglionic neurones of the third thoracic segment of the cat. J Auton Nerv Syst 13: 201–244

    PubMed  CAS  Google Scholar 

  44. Dembowsky K, Czachurski J, Seller H (1985) Morphology of sympathetic pregan¬glionic neurons in the thoracic spinal cord of the cat: an intracellular horseradish peroxidase study. J Comp Neurol 238: 453–465

    PubMed  CAS  Google Scholar 

  45. Dembowsky K, Czachurski J, Seller H (1986) Baroreceptor induced disfacilitation and postsynaptic inhibition in sympathetic preganglionic neurones of the cat. Pflügers Arch 406: R24

    Google Scholar 

  46. Dembowsky K, Czachurski J, Seller H (1989) Some properties of the sympathoinhibition from the caudal ventrolateral medulla oblongata in the cat. In: Ciriello J, Caverson MM, Polosa C (eds) Progress in brain research, vol 81. Elsevier, Amsterdam pp 143–157

    Google Scholar 

  47. Dietrich WD, Lowry OH, Loewy AD (1982) The distribution of glutamate, GABA and aspartate in the nucleus tractus solitarius of the cat. Brain Res 237: 254–260

    PubMed  CAS  Google Scholar 

  48. Dittmar C (1873) Ueber die Lage des sogenannten Gefässcentrums in der Medulla oblongata. Ber Verh Sachs Ges Wiss Leipzig, Math Phys C1 25: 449–469

    Google Scholar 

  49. Donoghue S, Felder RB, Jordan D, Spyer KM (1984) The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study. J Physiol (Lond) 347: 397–409

    CAS  Google Scholar 

  50. Eckberg DL (1977) Baroreflex inhibition of the human sinus node: importance of stimulus intensity, duration, and rate of pressure change. J Physiol (Lond) 269: 561–577

    CAS  Google Scholar 

  51. Ermirio R, Ruggeri P, Cogo CE, Molinari C, Calaresu FR (1989) Neuronal and cardiovascular responses to ANF microinjected into the solitary nucleus. Am J Physiol 256: R577–R582

    PubMed  CAS  Google Scholar 

  52. Feldberg W, Guertzenstein PG (1976) Vasodepressor effects obtained by drugs acting on the ventral surface of the brain stem. J Physiol (Lond) 258: 337–355

    CAS  Google Scholar 

  53. Felder RB, Heesch CM (1987) Interactions in nucleus tractus solitarius between right and left carotid sinus nerves. Am J Physiol 253: H1127–H135

    PubMed  CAS  Google Scholar 

  54. Felder RB, Mifflin SW (1988) Modulation of carotid sinus afferent input to nucleus tractus solitarius by parabrachial nucleus stimulation. Circ Res 63: 35–49

    PubMed  CAS  Google Scholar 

  55. Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7: 229–259

    Google Scholar 

  56. Gabriel M, Seller H (1970) Interaction of baroreceptor afferents from carotid sinus and aorta at the nucleus tractus solitarii. Pflügers Arch 318: 7–20

    PubMed  CAS  Google Scholar 

  57. Gebber GL, McCall RB (1976) Identification and discharge patterns of spinal sympathetic interneurons. Am J Physiol 231 (3): 722–733

    PubMed  CAS  Google Scholar 

  58. Geis GS, Wurster RD (1980) Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res 182: 19–30

    PubMed  CAS  Google Scholar 

  59. Gordon FJ (1987) Aortic baroreceptor reflexes are mediated by NMD A receptors in caudal ventrolateral medulla. Am J Physiol 252: R628–R633

    PubMed  CAS  Google Scholar 

  60. Granata AR, Reis DJ (1983) Release of (3H)L-glutamine acid (L-Glu) and (3H)Z)-aspartic acid ( D-Asp) in the area of nucleus solitarius in vivo produced by stimulation of the vagus nerve. Brain Res 259: 77–93

    PubMed  CAS  Google Scholar 

  61. Granata AR, Kumada M, Reis DJ (1985) Sympathoinhibition by Al-noradrenergic neurons is mediated by neurons in the CI area of the rostral medulla. J Auton Nerv Syst 14: 387–395

    PubMed  CAS  Google Scholar 

  62. Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1985) Brain stem area with CI epinephrine neurons mediates baroreflex vasodepressor responses. Am J Physiol 248: H547–H567

    PubMed  CAS  Google Scholar 

  63. Guertzenstein PG, Silver A (1974) Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol (Lond) 242: 489–503

    CAS  Google Scholar 

  64. Gunn, CG, Sevelius G, Puiggari MJ, MyersFK (1968) Vagal cardiomotormechanisms in the hindbrain of the dog and cat. Am J Physiol 214: 258–262

    CAS  Google Scholar 

  65. Guyenet PG (1984) Baroreceptor-mediated inhibition of A5 noradrenergic neurons. Brain Res 303: 31–40

    PubMed  CAS  Google Scholar 

  66. Guyenet PG, Filtz TM, Donaldson SR (1986) Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res 407: 272–284

    Google Scholar 

  67. Guyenet PG, Sun MK, Brown DL (1987) Role of GABA and excitatory aminoacids in medullary baroreflex pathways. In: Ciriello J, Calaresu FR, Renaud LP, Polosa C (eds) Organization of the autonomic nervous system: central and peripheral mechanisms. Liss, New York, pp 215–225

    Google Scholar 

  68. Haeusler G, Osterwalder R (1980) Evidence suggesting a transmitter or neuromodulatory role for substance P at the first synapse of the baroreceptor reflex. Naunyn Schmiedebergs Arch Pharmacol 314: 111–121

    PubMed  CAS  Google Scholar 

  69. Heike CJ, O’Donohue TL, Jacobowitz DM (1980) Substance P as a baro- and chemoreceptor afferent neurotransmitter: immunocytochemical and neurochemical evidence in the rat. Peptides 1 (1): 1–9

    Google Scholar 

  70. Hellner K, von Baumgarten R (1961) Über ein Endigungsgebiet afferenter, kardiovasculärer Fasern des Nervus vagus im Rautenhirn der Katze. Pflügers Arch 273: 223–234

    CAS  Google Scholar 

  71. Hilton SM (1963) Inhibition of baroreceptor reflexes on hypothalamus Stimulation. J Physiol (Lond) 165. 56P–57 P

    Google Scholar 

  72. Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260: 98–126

    PubMed  CAS  Google Scholar 

  73. Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32: 529–547

    PubMed  CAS  Google Scholar 

  74. Iiiert M, Gabriel M (1972) Descending pathways in the cervical cord of cats affecting blood pressure and sympathetic activity. Pflügers Arch 335: 109–124

    Google Scholar 

  75. Ulert M, Seller H (1969) A descending sympathoinhibitory tract in the ventrolateral column of the cat. Pflügers Arch 313: 343–360

    Google Scholar 

  76. Iriuchijima J, Kumada M (1964) Activity of single vagal fibers efferent to the heart. Jpn J Physiol 14: 479–487

    PubMed  CAS  Google Scholar 

  77. Jewett DL (1964) Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio-inhibitory fibres. J Physiol (Lond) 175: 321–357

    CAS  Google Scholar 

  78. Jordan D, Spyer KM (1978) The distribution and excitability of myelinated aortic nerve afferent terminals. Neurosci Lett 8: 113–117

    Google Scholar 

  79. Kalia M (1981) Brain stem localization of vagal preganglionic neurons. J Auton Nerv Syst 3: 451–481

    PubMed  CAS  Google Scholar 

  80. Kalia M, Richter D (1985) Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. I. A light microscopic analysis. J Comp Neurol 241: 503–520

    CAS  Google Scholar 

  81. Kalia M, Welles RV (1980) Brain stem projections of the aortic nerve in the cat: a study using tetramethyl benzidine as the substrate for horseradish peroxidase. Brain Res 188: 23–32

    PubMed  CAS  Google Scholar 

  82. Kannan H, Yamashita H (1985) Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in neural control of the cardiovascular system in rats. Brain Res 329: 205–212

    PubMed  CAS  Google Scholar 

  83. Katona PG, Barnett GO (1969) Central origin of asymmetry in the carotid sinus reflex. Ann NY Acad Sci 156 (2): 779–786

    PubMed  CAS  Google Scholar 

  84. Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218: 1030–1037

    PubMed  CAS  Google Scholar 

  85. Kezdi P, Geller E (1968) Baroreceptor control of postganglionic sympathetic nerve discharge. Am J Physiol 214 (3): 427–435

    PubMed  CAS  Google Scholar 

  86. Koch E (1931) Die reflektorische Selbststeuerung des Kreislaufes. Steinkopff, Dresden

    Google Scholar 

  87. Koepchen HP, Thurau K (1958) Über die Entstehungsbedingungen der atemsynchronen Schwankungen des Vagustonus ( Respiratorische Arrhythmie ). Pflügers Arch 269: 10–30

    Google Scholar 

  88. Koepchen HP, Lux HD, Wagner PH (1961) Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressoreceptorischen Herzreflexes. Pflügers Arch 273: 413–430

    CAS  Google Scholar 

  89. Koepchen HP, Wagner PH, Lux HD (1961) Funktionelle Bestimmung und Differenzierung des efferenten Zeitbedarfs für die vagale Herzverlangsamung. Pflügers Arch 273: 431–442

    Google Scholar 

  90. Koepchen HP, Wagner PH, Lux HD (1961) Über die Zusammenhänge zwischen zentraler Erregbarkeit, reflektorischem Tonus und Atemrhythmus bei der nervösen Steuerung der Herzfrequenz. Pflügers Arch 273: 443–465

    CAS  Google Scholar 

  91. Koepchen HP, Langhorst P, Seller H, Polster J, Wagner PH (1967) Neuronale Aktivität in unteren Hirnstamm mit Beziehung zum Kreislauf. Pflügers Arch 294: 40–64

    CAS  Google Scholar 

  92. Koepchen HP, Langhorst P, Seller H (1975) The problem of identification of autonomic neurons in the lower brain stem. Brain Res 87: 375–393

    PubMed  CAS  Google Scholar 

  93. Koizumi K, Seller H, Kaufman A, Brooks CMC (1971) Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res 27: 281–294

    PubMed  CAS  Google Scholar 

  94. van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224: 1–24

    PubMed  Google Scholar 

  95. Kubo T, Misu Y (1981) Pharmacological characterisation of the alpha-adrenoceptors responsible for a decresase of blood pressure in the nucleus tractus solitarii of the rat. Naunyn Schmiedebergs Arch Pharmacol 317: 120–125

    PubMed  CAS  Google Scholar 

  96. Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol (Lond) Physiol 222: 1–15

    CAS  Google Scholar 

  97. Kunze DL (1986) Acute resetting of baroreceptor reflex in rabbits: a central component. Am J Physiol 250: H866–H870

    PubMed  CAS  Google Scholar 

  98. Lackner KJ (1980) Mapping of monoamine neurones and fibres in the cat lower brainstem and spinal cord. Anat Embryol (Berl) 161: 169–195

    CAS  Google Scholar 

  99. Le Galloudec E, Merahi N, Laguzzi R (1989) Cardiovascular changes induced by the local application of glutamate-related drugs in the rat nucleus tractus solitarii. Brain Res 503: 322–325

    PubMed  Google Scholar 

  100. Loewy AD, Burton H (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181: 421–450

    PubMed  CAS  Google Scholar 

  101. Loewy AD, McKellar S (1980) The neuroanatomical basis of central cardiovascular control. Fed Proc 39: 2495–2503

    PubMed  CAS  Google Scholar 

  102. Loewy AD, Wallach JH, McKellar S (1981) Efferent connections of the ventral medulla oblongata in the rat. Brain Res Rev 3: 63–80

    Google Scholar 

  103. Loewy AD, Marson L, Parkinson D, Perry MA, Sawyer WB (1986) Descending noradrenergic pathways involved in the A5 depressor response. Brain Res 386: 313–324

    PubMed  CAS  Google Scholar 

  104. Maley B, Mullett T, Eide R (1983) The nucelus tractus solitarii of the cat: a comparison of Golgi impregnated neurons with methionine-enkephalin- and substance P-immunoreactive neurons. J Comp Neurol 217: 405–417

    PubMed  CAS  Google Scholar 

  105. Malone E (1913) The nucleus cardiacus n. vagi and the three distinct types of nerve cells which innervate the three different types of muscle. Am J Anat 15: 121–130

    Google Scholar 

  106. Marson L, Loewy AD (1985) Topographic organization of stubstance P and monoamine cells in the ventral medulla of the cat. J Auton Nerv Syst 14: 271–285

    PubMed  CAS  Google Scholar 

  107. McAllen RM (1986) Location of neurones with cardiovascular and respiratory function, at the ventral surface of the cat medulla. Neuroscience 18 (1): 43–49

    PubMed  CAS  Google Scholar 

  108. McAllen RM (1986) Identification and properties of sub-retrofacial bulbospinal neurones: a descending cardiovascular pathway in the cat. J Auton Nerv Syst 17: 151–164

    PubMed  CAS  Google Scholar 

  109. McAllen RM, Spyer KM (1976) The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol (Lond) 258: 187–204

    CAS  Google Scholar 

  110. Mc Allen RM, Spyer KM (1978) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol (Lond) 282: 353–364

    CAS  Google Scholar 

  111. Mc Allen RM, Spyer KM (1978) The baroreceptor input to cardiac vagal motoneu¬rones. J Physiol (Lond) 282: 365–374

    CAS  Google Scholar 

  112. McCall RB (1986) Lack of involvement of GAB A in baroreceptor-mediated sympathoinhibition. Am J Physiol 250: R1065–R1073

    PubMed  CAS  Google Scholar 

  113. McCall RB, Gebber GL, Barman SM (1977) Spinal interneurons in the baroreceptor reflex arc. Am J Physiol 232 (6): H657–H665

    PubMed  CAS  Google Scholar 

  114. Meeley MP, Ruggiero DA, Ishitsuka T, Reis DJ (1985) Intrinsic gamma-aminobutyric acid neurons in the nucleus of the solitary tract and the rostral ventrolateral medulla of the rat: an immunocytochemical and biochemical study. Neurosci Lett 58: 83–89

    PubMed  CAS  Google Scholar 

  115. Mendelowitz D, Scher AM (1990) Pulsatile pressure can prevent rapid baroreflex resetting. Am J Physiol 258: H92–H100

    PubMed  CAS  Google Scholar 

  116. Mifflin SW, Felder RB (1988) An intracellular study of time-dependent cardiovascular afferent interactions in nucleus tractus solitarius. J Neurophysiol 59 (6): 1798–1813

    PubMed  CAS  Google Scholar 

  117. Mifflin SW, Spyer KM, Withington-Wray DJ (1988) Baroreceptor inputs to the nucleus tractus solitarius in the cat: postsynaptic actions and the influence of respiration. J Physiol (Lond) 399: 349–367

    CAS  Google Scholar 

  118. Mifflin SW, Spyer KM,Whitington-Wray DJ (1988) Baroreceptor inputs to the nucleus tractus solitarius in the cat: modulation by the hypothalamus. J Physiol (Lond) 399: 369–387

    CAS  Google Scholar 

  119. Miles R (1986) Frequency dependence of synaptic transmission in nucleus of the solitary tract. J Neurophysiol 55 /5: 1076–1090

    PubMed  CAS  Google Scholar 

  120. Miselis RR, Rogers WT, Schwaber JS, Spyer KM (1989) Localization of cardiomotor neurones in the anaesthetized rat; cholera-toxin HRP conjugate and pseudorabies labelling. J Physiol (Lond) 416: 63 P

    Google Scholar 

  121. Miura M (1975) Postsynaptic potentials recorded from nucleus of the solitary tract and its subjacent reticular formation elicited by stimulation of the carotid sinus nerve. Brain Res 100: 437–440

    PubMed  CAS  Google Scholar 

  122. Miura M, Kitamura T (1979) Postsynaptic potentials recorded from medullary neurones following stimulation of carotid sinus nerve. Brain Res 162: 261–272

    PubMed  CAS  Google Scholar 

  123. Miura M, Okada J (1981) Cardiac and non-cardiac preganglionic neurons of the thoracic vagus nerve: an HRP study in the cat. Jpn J Physiol 31: 53–66

    PubMed  CAS  Google Scholar 

  124. Monaghan DT, Cotman CW (1985) Distribution of N-methyl-Dl-aspartate-sensitive L-(3H) Glutamate-binding sites in rat brain. J Neurosci 5 (11): 2909–2919

    PubMed  CAS  Google Scholar 

  125. Morest DK (1967) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 1130: 277–300

    Google Scholar 

  126. Morrison SF, Milner TA, Reis DJ (1988) Reticulospinal vasomotor neurons of the rat rostral ventrolateral medualla: relationship to sympathetic nerve activity and the CI adrenergic cell group. J Neurosci 8 (4): 1286–1301

    PubMed  CAS  Google Scholar 

  127. Morrison SF, Callaway J, Milner TA, Reis DJ (1989) Glutamate in the spinal sympathetic intermediolateral nucleus: localization by light and electron microscopy. Brain Res 503: 5–15

    PubMed  CAS  Google Scholar 

  128. Morrison SF, Ernsberger P, Milner TA, Callaway J, Gong A, Reis DJ (1989) A glutamate mechanism in the intermediolateral nucleus mediates sympathoexcitatory responses to stimulation of the rostral ventrolateral medulla. In: Ciriello J, Caverson MM, Polosa C (eds) Progress in brain research, vol 81. Elsevier, Amsterdam, pp 159–169

    Google Scholar 

  129. Moruzzi G (1940) Paleocerebellar inhibition of vasomotor and respiratory carotis sinus reflexes. J Neurophysiol 3: 20–32

    Google Scholar 

  130. Murugaian J, Sundaram K, Krieger A, Sapru H (1989) Electrolytic lesions in the depressor area of the ventrolateral medulla of the rat abolish depressor responses to the aortic nerve stimulation. Brain Res 499: 371–377

    PubMed  CAS  Google Scholar 

  131. Neil JJ, Loewy AD (1982) Decreases in blood pressure in response to L-glutamate microinjections into the A5 catecholamine cell group. Brain Res 241: 271–278

    PubMed  CAS  Google Scholar 

  132. Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3: 207–218

    PubMed  CAS  Google Scholar 

  133. Nosaka S, Yamamoto T, Yasunaga K (1979) Localization of vagal cardioinhibitory preganglionic neurons within rat brain stem. J Comp Neurol 186: 79–92

    PubMed  CAS  Google Scholar 

  134. Nosaka S, Yasunaga K, Kawano M (1979) Vagus cardioinhibitory fibers in rats. Pflügers Arch 379: 281–285

    PubMed  CAS  Google Scholar 

  135. Nosaka S, Yasunaga K, Tamai S (1982) Vagal cardiace preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol 243. R92–R98

    PubMed  CAS  Google Scholar 

  136. Oldfield BJ, McLachlan EM (1981) An analysis of the sympathetic preganglionic neurons projecting from the upper thoracic spinal roots of the cat. J Comp Neurol 196: 329–345

    PubMed  CAS  Google Scholar 

  137. Onai T, Takayama K, Miura M (1987) Projections to areas of the nucleus tractus solitarii related to circulatory and respiratory responses in cats. J Auton Nerv Syst 18: 163–175

    PubMed  CAS  Google Scholar 

  138. Panneton WM, Loewy AD (1980) Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res 191: 239–244

    PubMed  CAS  Google Scholar 

  139. Paton JFR, Silva-Carvalho L, Goldsmith GE, Spyer KM (1990) Inhibition of barosensitive neurones evoked by lobule IXb of the posterior cerebellar cortex in the decerebrate rabbit. J Physiol (Lond) 427: 553–565

    CAS  Google Scholar 

  140. Person RJ (1989) Somatic and vagal afferent convergence on solitary tract neurons in the cat: electrophysiological characteristics. Neuroscience 30 (2): 283–295

    PubMed  CAS  Google Scholar 

  141. Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146: 189–218

    PubMed  CAS  Google Scholar 

  142. Petras JM, Faden (1978) The origin of sympathetic preganglionic neurons in the dog. Brain Res 144: 353–357

    CAS  Google Scholar 

  143. Pilowsky P, West M, Chalmers J (1985) Renal sympathetic nerve responses to stimulation, inhibition and destruction of the ventrolateral medulla in the rabbit. Neurosci Lett 60: 51–55

    PubMed  CAS  Google Scholar 

  144. Potter EK (1982) Adaptation of cardiac vagal responses to baroreceptor stimuli in the dog. J Physiol (Lond) 329: 411–423

    CAS  Google Scholar 

  145. Quest JA, Gebber GL (1972) Modulation of baroreceptor reflexes by somatic afferent nerve stimulation. Am J Physiol 222 (5): 1251–1259

    PubMed  CAS  Google Scholar 

  146. Quintin L, Gillon JY, Ghignone M, Renaud B, Pujol JF (1987) Baroreflex-linked variations of catecholamine metabolism in the caudal ventrolateral medulla: an in vivo electrochemical study. Brain Res 425: 319–336

    PubMed  CAS  Google Scholar 

  147. Richter DW, Keck W, Seller H (1970) The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflügers Arch 317: 110–123

    PubMed  CAS  Google Scholar 

  148. Richter DW, Jordan D, Ballantyne D, Meesmann M, Syper KM (1986) Presynaptic depolarization in myelinated vagal afferent fibres terminating in the nucleus of the tractus solitarius in the cat. Pflügers Arch 406: 12–19

    PubMed  CAS  Google Scholar 

  149. Ross CA, Ruggiero DA, Reis DJ (1981) Afferent projections to cardiovascular portions of the nucleus of the tractus solitarius in the rat. Brain Res 223: 402–408

    PubMed  CAS  Google Scholar 

  150. Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1984) Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing CI adrenaline neurons. J Comp Neurol 228: 168–185

    PubMed  CAS  Google Scholar 

  151. Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242: 511–534

    PubMed  CAS  Google Scholar 

  152. Rossi GF, Brodal A (1956) Spinal afferents to the trigeminal sensory nuclei and the nucleus of the solitary tract. Confin Neurol 16: 321–332

    PubMed  Google Scholar 

  153. Rudomin P (1968) Excitability changes of superior laryngeal, vagal and depressor afferent terminals produced by stimulation of the solitary tract nucleus. Exp Brain Res 6: 156–170

    PubMed  CAS  Google Scholar 

  154. Salmoiraghi GC (1962) “Cardiovascular” neurones in brain stem of cat. J Neurophysiol 25:182–197

    PubMed  CAS  Google Scholar 

  155. Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317

    PubMed  CAS  Google Scholar 

  156. Schlor KH, Stumpf H, Stock G (1984) Baroreceptor reflex during arousal induced by electrical stimulation of the amygdala or by natural stimuli. J Auton Nerv Syst 10: 157–165

    PubMed  CAS  Google Scholar 

  157. Schwaber J, Schneideman N (1975) Aortic nerve-activated cardioinhibitory neurons and interneurons. Am J Physiol 229 (3): 783–789

    PubMed  CAS  Google Scholar 

  158. Schwaber JS, Kapp BS, Higgins GA, Rapp PR (1982) Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. J Neurosci 2 (10): 1424–1438

    PubMed  CAS  Google Scholar 

  159. Seiders EP, Stuesse SL (1984) A horseradish peroxidase investigation of carotid sinus nerve components in the rat. Neurosci Lett 46: 13–18

    PubMed  CAS  Google Scholar 

  160. Seller H (1973) The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular events. Pflugers Arch 343: 317–330

    PubMed  CAS  Google Scholar 

  161. Seller H, Illert M (1969) The localization oft he first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pflugers Arch 306: 1–19

    PubMed  CAS  Google Scholar 

  162. Seller H, Richter DW (1971) Some quantitative aspects of the central transmission of the baroreceptor activity. In: Kao FF, Koizumi K, Vasalle M (eds) Research in physiology. Auolo Gaggi, Bologna, pp 541–549

    Google Scholar 

  163. Simon JR, Dimicco SK, Dimicco JA, Aprison MH (1985) Choline acetyl transferase and glutamate uptake in the nucleus tractus solitarius and dorsal motor nucleus of the vagus: effect of nodose ganglionectomy. Brain Res 344: 405–408

    PubMed  CAS  Google Scholar 

  164. Smith JK, Barron KW (1990) Cardiovascular effects of L-glutamate and tetrodoxin microinjected into the rostral and caudal ventrolateral medulla in normotensive and spontaneously hypertensive rats. Brain Res 506: 1–8

    PubMed  CAS  Google Scholar 

  165. Smith OA, Nathan MA (1966) Inhibition of the carotid sinus reflex by stimulation of the inferior olive. Science 154: 674–675

    PubMed  Google Scholar 

  166. Somogyi P, Minson JB, Morilak D, Llewellyn-Smith I, Mcllhinney JRA, Chalmers J (1989) Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control. Brain Res 496: 401–407

    PubMed  CAS  Google Scholar 

  167. Spanswick D, Logan SD (1990) Sympathetic preganglionic neurones in neonatal rat spinal cord in vitro: electrophysiological characteristics and the effects of selective excitatory amino acid receptor agonists. Brain Res 525: 181–188

    PubMed  CAS  Google Scholar 

  168. Spyer KM (1981) Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88: 23–124

    Google Scholar 

  169. Strack AM, Sawyer WB, Hughes JH, Piatt KB, Loewy AD (1989) A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 491: 156–162

    PubMed  CAS  Google Scholar 

  170. Strack AM, Sawyer WB, Piatt KB, Loewy AD (1989) CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 491: 274–296

    PubMed  CAS  Google Scholar 

  171. Stroh-Werz M, Langhorst P, Camerer H (1976) Neuronal activity with relation to cardiac rhythm in the lower brain stem of he dog. Brain Res 106: 293–305

    PubMed  CAS  Google Scholar 

  172. Stuesse SL (1982) Origins of cardiac vagal preganglionic fibers: a retrograde transport study. Brain Res 236: 15–25

    PubMed  CAS  Google Scholar 

  173. Stuesse SL, Fish SE (1984) Projections to the cardioinhibitory region of the nucleus ambiguus of rat. J Comp Neurol 229: 271–278

    PubMed  CAS  Google Scholar 

  174. Stuesse SL, Powell KA (1982) Cardiac vagal preganglionic fibers in neonatal rats: a comparison with cervical vagal components. Neurosci Lett 34: 7–12

    PubMed  CAS  Google Scholar 

  175. Sugimoto T, Itoh K, Mizuno N, Nomura S, Konishi A (1979) The site of origin of cardiac preganglionic fibers of the vagus nerve: an HRP study in the cat. Neurosci Lett 12: 53–58

    PubMed  CAS  Google Scholar 

  176. Sun MK, Guyenet PG (1985) GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol 249. R672–R680

    PubMed  CAS  Google Scholar 

  177. Sun MK, Guyenet PG (1987) Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am J Physiol 252: R699–R709

    PubMed  CAS  Google Scholar 

  178. Szentagothai J (1952) The general visceral efferent column of the brain stem. Acta Morphol Acad Sci Hung 2: 313–327

    Google Scholar 

  179. Talman WT (1989) Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci Lett 102: 247–252

    PubMed  CAS  Google Scholar 

  180. Talman WT, Perrone MH, Reis DJ (1980) Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 209: 813–814

    PubMed  CAS  Google Scholar 

  181. Terui N, Saeki Y, Kumada M (1987) Confluence of barosensory and nonbarosensory inputs at neurons in the ventroalteral medulla in rabbits. Can J Physiol Pharmacol 65: 1584–1590

    PubMed  CAS  Google Scholar 

  182. Thames MD, Ballon BJ (1984) Occlusive summation of carotid and aortic baroreflexes in control of renal nerve activity. Am J Physiol 246: H851–H857

    PubMed  CAS  Google Scholar 

  183. Urbanski RW, Sapru HN (1988) Putative neurotransmitters involved in medullary cardiovascular regulation. J Auton Nerv Syst 25: 181–193

    PubMed  CAS  Google Scholar 

  184. Wallach JH, Loewy AD (1980) Projections of the aortic nerve to the nucleus tractus solitarius in the rabbit. Brain Res 188: 247–251

    PubMed  CAS  Google Scholar 

  185. Wang Q, Li P (1988) Inhibition of baroreflex following microinjection of GAB A or morphine into the nucleus tractus solitarii in rabbits. J Auton Nerv Syst 25: 165–172

    PubMed  CAS  Google Scholar 

  186. West MJ, Blessing WW, Chalmers J (1981) Arterial baroreceptor reflex function in the conscious rabbit after brainstem lesions coinciding with the A1 group of catecholamine neurons. Circ Res 49: 959–970

    PubMed  CAS  Google Scholar 

  187. Willette RN, Punner S, Krieger AJ, Sapru HN (1984) Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Brain Res 321: 169–174

    PubMed  CAS  Google Scholar 

  188. Yamada KA, McAllen RM, Loewy AD (1984) GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res 297: 175–180

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seller, H. (1991). Central Baroreceptor Reflex Pathways. In: Persson, P.B., Kirchheim, H.R. (eds) Baroreceptor Reflexes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76366-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76366-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76368-7

  • Online ISBN: 978-3-642-76366-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics