Skip to main content

Biological Actions of CCK in the Central Nervous System

  • Chapter
Cholecystokinin Antagonists in Gastroenterology

Abstract

Cholecystokinin (CCK), a gastrointestinal hormone [37], mediates digestive functions and feeding behaviors. Vanderhaeghen et al. [67] demonstrated the presence of gastrin-like immunoreactivity in mammalian brain, and subsequent studies indicate that the majority of this immunoreactivity could be attributed to CCK. Although a large peptide containing 58 amino acid (CCK58) is the major circulating form of CCK in humans and dogs [21,23], the predominant molecular form of CCK in the brain is CCK8 (CCK26–33, the eight amino acids at the C terminus of CCK), which contains a sulfated tyrosine residue [14,54]. However, the unsulfated form (CCK8US) has been detected, in addition to CCK4 [54]. Overall, CCK33 is only present in the brain in small (2%-5% of CCK immunoreactivity) amounts [54].

The research was supported by USPHS Grants MH-41440 and MH-00378 to RYW. CRA was supported by NRSA MH-09791.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baber NS, Dourish CT, Hill DR (1989) The role of CCK caerulein, and CCK antagonists in nociception. Pain 39:307–328

    Article  PubMed  CAS  Google Scholar 

  2. Barias N, Jensen RI, Beinfeld MC, Gardner JD (1982) Cyclic nucleotide antagonists of the cholecystokinin: structural requirements for interaction with the cholecystokinin receptor. Am J Physiol 242:G161–G167

    Google Scholar 

  3. Bohme GA, Stutzmann JM, Blanchard JC (1988) Excitatory effects of cholecystokinin in rat hippocampus: pharmacological response compatible with central or B-type receptors. Brain Res 451:309–318

    Article  PubMed  CAS  Google Scholar 

  4. Bohme GA, Durieux C, Stutzmann JM, Charpentier B, Rogues BP, Blanchard JC (1989) Electrophysiological studies with new CCK-analogs: correlation with binding affinity of B-type receptors. Peptides 10:407–414

    Article  PubMed  CAS  Google Scholar 

  5. Bradwejn J, DeMontigny C (1984) Benzodiazepines antagonize cholecystokinin-induced activation of rat hippocampal neurons. Nature 312:363–364

    Article  PubMed  CAS  Google Scholar 

  6. Bradwejn J, DeMontigny C (1985) Effects of PK 8165, a partial benzodiazepine receptor agonist on cholecystokinin-induced activation of hippocampal pyramidal neurons: a microiontophoretic study in the rat. Eur J Pharmacol 112: 415–417

    Article  PubMed  CAS  Google Scholar 

  7. Chang RSL, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist, Proc Natl Acad Sci USA 83:4923–4926

    Article  PubMed  CAS  Google Scholar 

  8. Chang RSL, Lotti VJ, Monaghan RL, Birnbaum J, Stapley EO, Goetz MA, Albers-Schonberg G, Patchett AA, Liesch JM, Hensens OD, Springer VJ (1985) A potent nonpeptide cholecystokinin antagonist selective of peripheral tissues isolated from Aspergillus alliaceus. Science 230:177–179

    Article  PubMed  CAS  Google Scholar 

  9. Charpentier B, Dor A, Roy P, England P, Pham H, Durieux C, Roques BP (1989) Synthesis and binding affinities of cyclic and related linear analogues of CCK8 selective for central receptors. J Med Chem 32:1184–1190

    Article  PubMed  CAS  Google Scholar 

  10. Crawley JN (1989) Microinjection of cholecystokinin into the rat ventral tegmental area potentiates dopamine-induced hypolocomotion. Synapse 3:346–355

    Article  PubMed  CAS  Google Scholar 

  11. Crawley JN, Hommer DW, Skirboll LR (1984) Behavioral and neurophysiological evidence for a facilitatory interaction between co-existing transmitters: cholecystokinin and dopamine. Neurochem Int 6:755–760

    Article  PubMed  CAS  Google Scholar 

  12. Dauge V, Bohme GA, Crawley JN, Durieux C, Stutzmann JM, Feger J, Blanchard JC, Roques BP (1990) Investigation of behavioral and electrophysiological response induced by selective stimulation of CCK B receptors by using a new highly potent CCK analog, BC 264, Synapse 6:73–80

    Article  PubMed  CAS  Google Scholar 

  13. Della-Fera MA, Baile CA (1979) Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles suppress feeding. Science 206: 471–473

    Article  PubMed  CAS  Google Scholar 

  14. Dockray GJ (1976) Immunohistochemical evidence of cholecystokinin-like peptides in the brain. Nature 264:568–570

    Article  PubMed  CAS  Google Scholar 

  15. Dourish CT, Coughlan J, Hawley D, Clark ML, Iversen SD (1988) Blockade of CCK-induced hypophagia and prevention of morphine tolerance by the CCK antagonist L-364718. In: Wang RY, Schoenfeld R (eds) Cholecystokinin antagonists. Liss, New York, pp 307–325

    Google Scholar 

  16. Dourish CT, Ruckert AC, Tattersall FD, Iversen SD (1989a) Evidence that decreased feeding induced by systemic injection of cholecystokinin is mediated by CCK-A receptors. Eur J Pharmacol 173:233–234

    Article  PubMed  CAS  Google Scholar 

  17. Dourish CT, Rycroft W, Iversen SD (1989b) Postponement of satiety by blockade of brain cholecytokinin (CCKB) receptors. Science 245:1509–1511

    Article  PubMed  CAS  Google Scholar 

  18. Dourish CT, O’Neill MF, Coughlan J, Kitchener SJ, Hawley D, Iversen SD (1990) The selective CCK-B receptor antagonist L-365260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur J Pharmacol 176: 35–44

    Article  PubMed  CAS  Google Scholar 

  19. Durieux C, Coppey M, Zajac JM, Rogues BP (1986) Occurrence of two cholecystokinin binding sites in guinea pig brain cortex. Biochem Biophys Res Commun 137:1167–1173

    Article  PubMed  CAS  Google Scholar 

  20. Durieux C, Pham H, Charpentier B, Roques BP (1988) Discrimination between CCK receptors of guinea-pig and rat brain by cyclic CCK8 analogues. Biochem Biophys Res Commun 154:1301–1307

    Article  PubMed  CAS  Google Scholar 

  21. Eberlein GA, Eysselein JR, Hesse WH, Goebell H, Schaefer M, Reeve JR (1987) Detection of cholecystokinin-58 in human blood by inhibition of degradation. Am J Physiol 253:G477–G482

    PubMed  CAS  Google Scholar 

  22. Evans BE, Bock MG, Rittle KE, Dipardo RM, Whitter WL, Veber DF, Anderson PS, Freidinger RM (1986) Design of potent, orally effective, non-peptidal antagonists of the peptide hormone cholecystokinin. Proc Acad Natl Sci USA 83:4918–4922

    Article  CAS  Google Scholar 

  23. Eysselein VE, Eberlein GA, Hesse WH, Singer MV, Goebell H, Reeve JR (1987) Cholecystokinin-58 is the major circulating form of cholecystokinin in canine blood. J Biol Chem 262:214–217

    PubMed  CAS  Google Scholar 

  24. Faris PL (1985) Opiate antagonistic function of cholecystokinin in analgesia and energy balance systems. Ann NY Acad Sci 448:437–447

    Article  PubMed  CAS  Google Scholar 

  25. Faris PL, Komisarau BR, Watkins LR, Mayer DJ (1983) Evidence for neuropeptide cholecystokinin as an antagonist of opioid analgesia. Science 219:310–312

    Article  PubMed  CAS  Google Scholar 

  26. Florholmen J, Malm D, Vonen B, Burhol PG (1989) Effect of cholecystokinin on the accumulation of inositol phosphates in isolated pancreatic islets. Am J Physiol 257:G865–G870

    PubMed  CAS  Google Scholar 

  27. Gardner JD, Jensen RT (1984) Cholecystokinin receptor antagonists. Am J Physiol 246:G471–G476

    PubMed  CAS  Google Scholar 

  28. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84:488–495

    Article  PubMed  CAS  Google Scholar 

  29. Hahne WF, Jensen RT, Lemp GF, Gardner JD (1981) Proglumide and benzotript: members of a different class of cholecystokinin receptor antagonists. Proc Natl Acad Sci USA 78:6304–6308

    Article  PubMed  CAS  Google Scholar 

  30. Harro J, Lang A, Vasar E (1990) Long term diazepam treatment produces changes in cholecystokinin receptor binding in rat brain. Eur J Pharmacol 180: 77–83

    Article  PubMed  CAS  Google Scholar 

  31. Hill DR, Woodruff GN (1990) Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365260. Brain Res 526:276–283

    Article  PubMed  CAS  Google Scholar 

  32. Hill DR, Campbell NJ, Shaw TM, Woodruff GN (1987) Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in the rat CNS using highly selective non-peptide CCK antagonists. J Neurosci 7:2967–2976

    PubMed  CAS  Google Scholar 

  33. Hokfelt T, Skirboll L, Rehfeld JF, Goldstein M, Markey K, Danno O (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neurosci 5:2093–2124

    Article  CAS  Google Scholar 

  34. Horwell DC, Hughes J, Hunter JC, Pritchard MC, Richardson RS, Roberts E, Woodruff GN (1991) Rationally designed “dipeptoid” analogues of CCK α-methyltryptophan derivatives as highly selective and orally active gastrin and CCKB antagonists with potent anxiolytic properties. J Med Chem 34:404–419

    Article  PubMed  CAS  Google Scholar 

  35. Hughes J, Boden P, Costall B, Domeney A, Kelly E, Horwell DC, Hunter JC, Pinnock RD, Woodruff GN (1990) Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci USA 87:6728–6732

    Article  PubMed  CAS  Google Scholar 

  36. Innis RB, Snyder S (1980) Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci USA 77:6917–6921

    Article  PubMed  CAS  Google Scholar 

  37. Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Amer J Physiol 86:599–613

    CAS  Google Scholar 

  38. Jiang LH, Kasser RJ, Wang RY (1988) Cholecystokinin antagonist lorglumide reverses chronic haloperidol-induced effects on doamine neurons. Brain Res 473:165–168

    Article  PubMed  CAS  Google Scholar 

  39. Jurna I, Zetler G (1981) Antinociceptive effect of centrally administered caerulein and cholecystokinin (CCK). Eur J Pharm 73:323–331

    Article  CAS  Google Scholar 

  40. Katsuura G, Itoh S (1985) Potentiation of β-endorphin effects by proglumide in rats. Eur J Pharmacol 107:363–366

    Article  PubMed  CAS  Google Scholar 

  41. Lin CW, Hollaway MW, Witte DG, Miller TR, Wolfram CAW, Bianchi BR, Bennett MJ, Nadzan AM (1990) A71378: a CCK agonist with high potency and selectivity for CCK-A receptors. Am J Physiol 258:G648–G651

    PubMed  CAS  Google Scholar 

  42. Lotti VJ, Chang RSL (1989) A new potent and selective non-peptide gastrin antagonist and brain CCK receptor (CCK-B) ligand: L-365260. Eur J Pharmacol 162:273–280

    Article  PubMed  CAS  Google Scholar 

  43. Makovec FR, Christe M, Bani MA, Pacini I, Setnikar I, Rovati LA (1985) New glutaramic acid derivatives with competitive and specific cholecystokinin-antagonist activity. Arzneirnttelforschung 35:1048–1051

    CAS  Google Scholar 

  44. Matthysse S (1973) Antipsychotic drug actions: a clue to the neuropathology of schizophrenia. Fed Proc 32:200–205

    PubMed  CAS  Google Scholar 

  45. Minabe Y, Ashby CR Jr, Wang RY (1991) The systemic administration of the CCKA receptor antagonist devazepide but not the CCKB receptor antagonists L-365260 reverses the effects of chronic haloperidol and clozapine on midbrain dopamine neurons in the rat. Brain Res 549:151–154

    Article  PubMed  CAS  Google Scholar 

  46. Moran TH, Robinson PH, Goldrich MS, McHugh PR (1986) Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 362: 175–179

    Article  PubMed  CAS  Google Scholar 

  47. Moroji T, Watanaben, Aoki N, Itoh S (1982) Antipsychotic effect of caerulein, a decapeptide chemically related to cholecystokinin octapeptide, on schizophrenia. Int Pharmacopsychiat 17:255–273

    CAS  Google Scholar 

  48. Nadzan AM, Kerwin JF Jr, Kopecka H, Lin CW, Miller T, Witte D, Burt S (1988) Structural and functional relationships among CCK antagonists. In: Wang RY, Schoenfeld R (eds) Cholecystokinin antagonists. Liss, New York, pp 93–103

    Google Scholar 

  49. Nair NPV, Bloom DM, Nestoros JN (1982) Cholecystokinin appear to have antipsychotic properties. Prog Neuropsychopharmacol Biol Psychiat 6:509–512

    Article  CAS  Google Scholar 

  50. O’Neill MF, Dourish CT, Iverson SD (1989) Morphine-induced analgesia in the rat paw pressure test is attenuated by CCK and enhanced by the CCK antagonist MK 329. Neuropharmacol 28:243–247

    Article  Google Scholar 

  51. O’Neill MF, Dourish CT, Tye SJ, Iversen SD (1990) Blockade of CCK-B receptors by L-365260 induces analgesia in the squirrel monkey. Brain Res 534:287–290

    Article  PubMed  Google Scholar 

  52. Panerai AE, Rouati LC, Cocco E, Sacerdot P, Mantegazza P (1987) Dissociation of tolerance and dependence to morphine: a possible role for cholecystokinin. Brain Res 410:52–60

    Article  PubMed  CAS  Google Scholar 

  53. Peikin SR, Costenbader CL, Gardner JD (1979) Action of derivatives of cyclic nucleotides on dispersed acini from guinea pig pancreas. Discovery of a competitive antagonist of the action of cholecystokinin. J Biol Chem 254:321–327

    Google Scholar 

  54. Rehfeld JF (1978) Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system. J Biol Chem 253: 4022–4030

    PubMed  CAS  Google Scholar 

  55. Reidelberger RD, O’Rouke MF (1989) Potent cholecystokinin antagonist L-364718 stimulated food intake in rats. Am J Physiol 257:R1512–R1518

    PubMed  CAS  Google Scholar 

  56. Rodriguez M, Amblard M, Galas MC, Lignon MF, Aumelas A, Martinez J (1990) Synthesis of cyclic analogues of cholecystokinin highly selective for central receptors. Int Peptide Protein Res 35:441–451

    Article  CAS  Google Scholar 

  57. Roques BP, Charpentier B, Marseigne I, Durieux C, Fournie-Zaluski MC, Dauge V, Feger J, Bohme A, Stutzman JM, Blanchard JC (1989) Development of selective CCK-related compounds as probes for biochemical and pharmacological characterization of CCK binding site heterogeneity. In: Hughes J, Dockray G, Woodruff G (eds) The neuropeptide cholecystokinin (CCK). Horwood, Chichester, pp 133–142

    Google Scholar 

  58. Saito AH, Sankaran H, Goldfine ID, Williams JA (1980) Cholecystokinin receptors in the brain: characterization and distribution. Science 208:1155–1156

    Article  PubMed  CAS  Google Scholar 

  59. Sakamoto C, Williams JA, Goldfine ID (1984) Brain CCK receptors are structurally distinct from pancreas CCK receptors. Biochem Biophys Res Comm 124:497–502

    Article  PubMed  CAS  Google Scholar 

  60. Schneider LH, Murphy RB, Gibbs J, Smith GP (1988) Comparative potencies of CCK antagonists for the reversal of the satiating effect of cholecystokinin. In: Wang RY, Schoenfeld R (eds) Cholecystokinin antagonists. Liss, New York, pp 263–284

    Google Scholar 

  61. Sekiguchi R, Moroji T (1986) A comparative study on characterizaton and distribution of cholecystokinin binding sites among the rat, mouse and guineapig brain. Brain Res 399:271–281

    Article  PubMed  CAS  Google Scholar 

  62. Shiosaki K, Lin CW, Kopecka H, Craig R, Wagenaar FL, Bianchi B, Miller T, Witte D, Nadzan AM (1990) Development of CCK-tetrapeptide analogues as potent and selective CCK-A receptor agonists. J Med Chem 33:2950–2952

    Article  PubMed  CAS  Google Scholar 

  63. Smith GP, Gibbs J (1985) The satiety effect of cholecystokinin: recent progress and current problems. Ann NY Acad Sci 448:417–423

    Article  PubMed  CAS  Google Scholar 

  64. Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213: 1036–1037

    Article  PubMed  CAS  Google Scholar 

  65. Studier JM, Reibaud M, Herve D, Blanc J, Glowinski J, Tassin JP (1986) Opposite effects of sulfated cholecystokinin on DA-sensitive adenylate cyclase in two areas of the rat nucleus accumbens. Eur J Pharmacol 126:125–128

    Article  Google Scholar 

  66. Vanderhaeghen JJ, Crawley JN (eds) (1985) Neuronal cholecystokinin. The New York Academy of Sciences, New York

    Google Scholar 

  67. Vanderhaeghen JJ, Signeau JC, Gepts W (1975) New peptides in vertebrate CNS reacting with antigastrin antibodies. Nature 257:604–605

    Article  PubMed  CAS  Google Scholar 

  68. Vickroy TW, Bianchi BR (1989) Pharmacological and mechanistic studies of cholecystokinin-facilitated 3H-dopamine efflux from rat nucleus accumbens. Neuropeptide 13:43–50

    Article  CAS  Google Scholar 

  69. Wang RY (1988) Cholecystokinin, dopamine and schizophrenia: recent progress and current problems. Ann NY Acad Sci 537:362–379

    Article  PubMed  CAS  Google Scholar 

  70. Wang RY, Kasser RJ, Hu XT (1988) Cholecystokinin receptor subtypes in the rat nucleus accumbens. In: Wang RY, Schoenfeld R (eds) Cholecystokinin antagonists. Liss, New York, pp 199–216

    Google Scholar 

  71. Wennogle LP, Wysowkyj H, Steel DJ, Petrack B (1988) Regulation of central cholecystokinin by guanyl nucleotides. J Neurochem 50:954–959

    Article  PubMed  CAS  Google Scholar 

  72. Wiesenfeld-Hallin Z, Xu XJ, Hughes J, Horwell DC, Hokfelt T (1990) PD 134308, a selective antagonist of cholecystokinin type B receptor, enhances the analgesic effect of morphine and synergistically interacts with intrathecal galanin to depress spinal nociceptive reflexes. Proc Natl Acad Sci USA 87:7105–7109

    Article  PubMed  CAS  Google Scholar 

  73. Williams JA, Gryson KA, McChesney DJ (1986) Brain CCK receptors: species differences in regional distribution and selectivity. Peptides 7:293–296

    Article  PubMed  CAS  Google Scholar 

  74. Worms PJ, Martinez C, Briet B, Castro B, Biziere K (1986) Evidence for a dopaminomimetic effect of intrastriatally injected cholecystokinin in mice. Eur J Pharmacol 121:395–401

    Article  PubMed  CAS  Google Scholar 

  75. Yasuhiko I, Ritsuko Y, Takeshi K (1987) CR 1409: a potent inhibitor of cholecystokinin-stimulated amylase release and cholecystokinin binding in rat pancreatic acini. Pancreas 12:85–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, R.Y., Ashby, C.R. (1991). Biological Actions of CCK in the Central Nervous System. In: Adler, G., Beglinger, C. (eds) Cholecystokinin Antagonists in Gastroenterology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76362-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76362-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76364-9

  • Online ISBN: 978-3-642-76362-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics