Skip to main content

Zerebraler Kreislauf bei Hypertonie: Risiken und therapeutische Bedeutung

  • Conference paper
  • 15 Accesses

Zusammenfassung

Die Hypertonie ist ein Hauptrisikofaktor für zerebrovaskuläre Erkrankungen, und zu den wesentlichen Vorteilen der modernen antihypertensiven Behandlung gehört die Prävention des Schlaganfalls. Die Hypertonie verursacht eine ausgeprägte strukturelle und funktionelle Adaptation der zerebralen Widerstandsgefäße. Gelegentlich können diese Veränderungen zur Entwicklung einer zerebralen Ischämie beitragen, wenn der Blutdruck unbeabsichtigt zu massiv gesenkt wird. In dem vorliegenden Beitrag wird erörtert, wie sich die Hypertonie und ihre Behandlung auf die zerebralen Gefäße und den Gehirnkreislauf auswirken.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Mazziotta JC, Phelps ME (1984) Human sensory Stimulation and deprivation: positron emission tomographic results and strategies. Ann Neurol [Suppl] 15: S50 - S60

    Google Scholar 

  2. Fencl V, Vale JR, Broch JA (1969) Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans. J Appl Physiol 27: 67–76

    PubMed  CAS  Google Scholar 

  3. Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow. Science 237: 896–898

    Article  PubMed  CAS  Google Scholar 

  4. Winn HR, Welsh JE, Rubio R, Berne RM (1980) Brain adenosine production in rat during sustained alteration in systemic blood pressure. Am J Physiol (Heart Circ Physiol 8 ) 239: H636 - H41

    Google Scholar 

  5. Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183– 238

    Google Scholar 

  6. Heistad DD, Kontos HA (1983) Cerebral circulation. In: Shepherd JT, Abbourd FM (eds) The cardiovascular system. American Physiological Society, Bethesda (Handbook of physiology, vol 3, sect 2, pp 137–182 )

    Google Scholar 

  7. Häggendal E, Johanson B (1965) Effects of arterial carbon dioxide tension and oxygen Saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand [Suppl 258] 66: 27–53

    Article  Google Scholar 

  8. MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM (1979) Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pfluegers Arch 378: 189–195

    Article  CAS  Google Scholar 

  9. Hamar J, Kovch ABG, Reivich M, Nyry I, Durity F (1979) Effect of phenoxybenzamine on cerebral blood flow and metalolism in the baboon during haemorrhagic shock. Stroke 10: 401–407

    Article  PubMed  CAS  Google Scholar 

  10. Beausaug-Linder M, Bill A (1981) Cerebral circulation in acute arterial hypertension — protective effects of sympathetic nervous activity. Acta Physiol Scand III: 193–199

    Google Scholar 

  11. Edvinson L (1987) Neurogenic control of cerebral circulation. In: Hartman A, Kuschinsky W (eds) Cerebral ischemia and hemorheologi. Springer, Berlin Heidelberg New York Tokyo, pp 13–23

    Chapter  Google Scholar 

  12. Barry DI, Jarden JO, Paulson OB, Graham DI, Strandgaard S (1984) Cerebrovascular effects of Converting enzyme Inhibition. I: Effects of intravenous Captopril in spontaneously hypertensive and normotensive rats. J Hypertens 2: 589–597

    Article  PubMed  CAS  Google Scholar 

  13. Paulson OB, Parving H–H, Olesen J, Skinh0j E (1973) Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man. J Appl Physiol 35: 111–116

    PubMed  CAS  Google Scholar 

  14. Kety SS, Hafkenschiel JH, Jeffers WA, Leopold IH, Shenkin HA (1948) The blood flow, vascular resistance, and oxygen consumption of the brain in essential hypertension. J Clin Invest 27: 511–514

    Article  CAS  Google Scholar 

  15. Hart MN, Heistad DD, Brody MJ (1980) Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension 2: 419–423

    PubMed  CAS  Google Scholar 

  16. Gottstein U (1965) Physiologie und Pathophysiologie des Hirnkreislaufs. Med Welt 715–726

    Google Scholar 

  17. Strandgaard S, Olesen J, Skinhoj E, Lassen NA (1973) Autoregulation of brain circulation in severe arterial hypertension. Med J 1: 507–510

    Article  CAS  Google Scholar 

  18. Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 53: 720–727

    PubMed  CAS  Google Scholar 

  19. Jonnes JV, Fitch W, MacKenzie ET, Strandgaard S, Harper AM (1976) Lower limit of cerebral blood flow autoregulation in the baboon. Circ Res 39: 555–557

    Google Scholar 

  20. Fujishima M, Omae T (1976) Lower limit of cerebral autoregulation in normotensive and spontaneously hypertensive rats. Experientia 32: 1019–1021

    Article  PubMed  CAS  Google Scholar 

  21. Barry DI, Strandgaard S, Graham DI et al. (1982) Cerebral blood flow in rats with renal and spontaneous hypertension: resetting of the lower limit of autoregulation. J Cereb Blood Flow Metab 2: 347–353

    Article  PubMed  CAS  Google Scholar 

  22. Brott T, Thalinger K, Hertzberg V (1986) Hypertension as a risk facfor for spontaneous intracerebral hemorrhage. Stroke 17: 1078–1083

    Article  PubMed  CAS  Google Scholar 

  23. Schulte BP, Leyten AC, Herman B (1985) Pre-stroke and immediate post-stroke hypertension: neuroepidemiological data. Br J Clin Pract [Symp Suppl] 39: 31–33

    CAS  Google Scholar 

  24. Roberts WC (1987) Frequency of systemic hypertension in various cardiovascular diseases. Am J Cardiol 60: 1E - 8E

    Article  PubMed  CAS  Google Scholar 

  25. Britton M, Carlsson A, de Faire U (1986) Blood pressure course in patients with acute stroke and matched controls. Stroke 17: 861–864

    CAS  Google Scholar 

  26. Fisher CM (1969) The arterial lesions underlying lacunes. Acta Neuropathol (Berl) 12: 1–15

    Article  Google Scholar 

  27. Veterans Administration Cooperative Study Group on Antihypertensive Agents (1967) Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202: 1028–1034

    Article  Google Scholar 

  28. Veterans Administration Cooperative Study Group on Anrihypertensive Agents (1970) Effects of treatment on morbidity in hypertension. II: Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA 213: 1143–1152

    Article  Google Scholar 

  29. Management Committee of the Australian Hypertension Trial (1980) The Australian therapeutic trial in mild hypertension. Lancet 1: 1261–1267

    Google Scholar 

  30. Medical Research Council Working Party (1985) MRC trial of treatment of mild hypertension: principal results. Br Med J 291: 97–104

    Article  Google Scholar 

  31. Russell RWR (1975) How does blood-pressure cause stroke? Lancet II: 1283–1285

    Google Scholar 

  32. Russell RW (1984) Pathological changes in small cerebral arteries causing occlusion and haemorrhage. J Cardiovasc Pharmacol 6: S691–S695

    Article  PubMed  Google Scholar 

  33. Spence JD (1986) Antihypertensive drugs and prevention of atherosclerotic stroke. Stroke 17: 808–810

    Article  PubMed  CAS  Google Scholar 

  34. Sacco RL, Wolf PA, Bharucha NE et al. (1984) Subarachnoid and intracerebral hemorrhage: natural history, prognosis, and precursive factors in the Framingham Study. Neurology 34: 847–854

    PubMed  CAS  Google Scholar 

  35. Bonita R (1986) Cigarette smoking, hypertension and the risk of subarachnoid hemorrhage: a population-based case-control study. Stroke 17: 831–835

    Article  PubMed  CAS  Google Scholar 

  36. Lassen NA, Agnoli A (1973) The Upper limit of autoregulation of cerebral blood flow — on the pathogenesis of hypertensive encephalopathy. Scand J Clin Lab Invest 30: 113–116

    Article  Google Scholar 

  37. Strandgaard S (1978) Autoregulation of cerebral circulation in hypertension. Acta Neurol Scand [Suppl 66] 57: 1–82

    Article  Google Scholar 

  38. Graham DI (1975) Ischaemic brain damage of cerebral perfusion failure type after treatment of severe hypertension. Br Med J 4: 739

    Article  PubMed  CAS  Google Scholar 

  39. Cove BH, Seddom M, Fletcher RF, Dukes DC (1979) Blindness after treatment for malignant hypertension. Br Med J 11: 245–246

    Article  Google Scholar 

  40. Ledingham JGG, Rajagopalan B (1979) Cerebral complications in the treatment of accelerated hypertension. Q J Med 48: 25–41

    PubMed  CAS  Google Scholar 

  41. Hülse JA, Taylor DSI, Dillon MJ (1979) Blindness and paraplegia in severe childhood hypertension. Lancet 11: 553–556

    Article  Google Scholar 

  42. Strandgaard S, Andersen GS, Ahlgreen P, Nielsen PE (1984) Visual disturbances anc occipital brain infarct following acute, transient hypotension and hypertensive patients. Acta Med Scand 216: 417–422

    PubMed  CAS  Google Scholar 

  43. Jackson G, Pierscianowski TA, Mahon W, Condon J (1976) Inappropriate antihypertensive therapy in the elderly. Lancet II: 1317–1318

    Google Scholar 

  44. Jansen PAF, Gribnau FWJ, Schultz BPM, Poels EFJ (1986) Contribution of inappropriate treatment for hypertension to pathogenesis of stroke in the elderly. Br Med J 293: 914–917

    Article  CAS  Google Scholar 

  45. Ruff RL, Talman WT, Petito F (1981) Transient ischemic attacks associated with hypotension in hypertensive patients with carotid artery stenosis. Stroke 12: 353–355

    Article  PubMed  CAS  Google Scholar 

  46. Spence JD, del Maestro RF (1985) Hypertension in acute ischemic stroke. Treat. Arch Neurol 42: 1000–1002

    Article  CAS  Google Scholar 

  47. Yatsu FM, Zivin J (1985) Hypertension in acute ischemic strokes. Not to treat. Arch Neurol 42: 999–1000

    Google Scholar 

  48. Lavin P (1986) Management of hypertension in patients with acute stroke. Arch Intern Med 146: 66–68

    Article  PubMed  CAS  Google Scholar 

  49. Bannan LT, Beevers DG, Jackson SD, Wright N (1980) ABC of blood pressure reduction. Special problems. Br Med J 281: 1200–1202

    Google Scholar 

  50. American Heart Association (1973) Report of the Joint Committee for Stroke Facilities. VII. Medical and surgical management of stroke. Stroke 4: 270–309

    Article  Google Scholar 

  51. Barry I, Strandgaard S, Graham DI, Brasndstrup O, Svendsen UG, Bolwig TG (1983) Effect of diaxozide induced hypotension on cerebral blood flow in hypertensive rats. Eur J Clin Invest 13: 201–207

    Article  PubMed  CAS  Google Scholar 

  52. Barry DI, Strandgaard S (1985) Acute effects of antihypertensive drugs on autoregulation of cerebral blood flow in spontaneously hypertensive rats. Prog Appl Microcirc 8: 206–212

    CAS  Google Scholar 

  53. Goldberg HI, Codario RA, Banka RS, Reivich M (1977) Patterns of cerebral disautoregulation in severe hypertension to blood pressure reduction with diazoxide. Acta Neurol Scand [Suppl 64] 56: 64–65

    Google Scholar 

  54. Vidt DG (1986) Current concept in treatment of hypertension emergencies. Am Heart J 111: 220–225

    Article  PubMed  CAS  Google Scholar 

  55. Rowe GG, Maxwell GM, Crumpton CW (1962) The cerebral haemodynamic response to administration of hydralazine. Circulation 25: 970–972

    PubMed  CAS  Google Scholar 

  56. Overgaard J, Skinh0j E (1975) A paradoxical cerebral haemodynamid effect of hydralazine. Stroke 6: 402–404

    Article  PubMed  CAS  Google Scholar 

  57. Johansson BB, Auer LM, Trümmer UG (1980) Pial vascular reaction to intravenous dihydralazine in the cat. Stroke 11: 369–371

    Article  PubMed  CAS  Google Scholar 

  58. Barry DI, Strandgaard S, Graham DI, Svendsen UG, Brasndstrup O, Paulson OB (1984) Cerebral blood flow response to intravenous dihydralazine in renal and spontaneously hypertensive rats. Stroke 15: 102–107

    Article  PubMed  CAS  Google Scholar 

  59. Henriksen L, Thorshauge C, Harmsen A et al. (1983) Controlled hypotension with sodium nitroprusside: Effects of cerebral blood flow and cerebral venous blood gases in patients operated for cerebral aneurysms. Acta Anaesthesiol Scand 27: 62–67

    Google Scholar 

  60. Turner JM, Powell D, Gibson RM, McDowall DG (1977) Intracranial pressure changes in neurosurgical patients during hypotension induced with sodium nitro prusside or trimetaphan. Br J Anaesthesiol 49: 419–420

    Article  CAS  Google Scholar 

  61. Keaney NP, McDowall DG, Turner JM et al. (1975) Cerebral blood flow autoregulation cerebrospinal fluid acid–base parameters and profound hypotension induced by sodium nitroprusside and deep halothane anaesthesia. In: Langfitt TW, McHenry LC, Reivich M, Wollman H (eds) Cerebral circulation and metabolism. Springer, Berlin Heidelberg New York, pp 21–23

    Chapter  Google Scholar 

  62. Fitch W, Pickard JD, Tamura A, Graham DI (1988) Effects of hypotension induced with sodium nitroprusside on the cerebral circulation before, and one week after, the subarachnoid injection of blood. J Neurol Neurosurg Psychiatry 51: 88–93

    Article  PubMed  CAS  Google Scholar 

  63. Henriksen L, Paulson OB (1982) The effects of sodium nitroprusside on cerebral blood flow and cerebral venous blood gases. II. Observations in awake man during successive blood pressure reduction. Eur J Clin Invest 12: 389–393

    Google Scholar 

  64. Bertel O, Conen D, Radii EW, Mueller J, Lang C, Dubach U (1983) Nifedepine in hypertensive emergencies. Br Med J 1: 19–21

    Article  Google Scholar 

  65. Mohamed AA, McCulloch J, Mendelow AD, Teasdale GM, Harper AM (1984) Effect of the calcium antagonist nimodipine on local cerebral blood flow: Relationship to arterial blood pressure. J Cereb Blood Flow Metab 4: 206–211

    Google Scholar 

  66. Vorstrup S, Andersen A, Blegvad N, Paulson OB (1986) Calcium antagonist (PY 108–068) treatment may further decrease flow in ischemic areas in acute stroke. J Cereb Blood Flow Metabol 6: 222–229

    Article  CAS  Google Scholar 

  67. Harris RJ, Branston NM, Symon L, Bayhan M, Watson A (1982) The effects of a calcium antagonist/nimodipine/ upon physiological responses of the cerebral vasculatur and its possible influence upon focal cerebral ischemia. Stroke 13: 759–760

    Article  PubMed  CAS  Google Scholar 

  68. Gaab MR, Höllerhage HG, Zumkeller M, Trost HA (1987) The effect of the Ca-antagonist nimodipine on cerebral blood flow autoregulation. J Cereb Blood Flow Metab [Suppl 1] 7: S170

    Google Scholar 

  69. Kerckhoff W van den, Kazda S (1987) The autoregulation of cerebral blood flow is influenced by calcium antagonists. J Cereb Blood Flow Metab [Suppl 1] 7: S169

    Google Scholar 

  70. Kincaid–Smith P, McMichael J, Murphy EA (1958) The clinical course and pathology of hypertension with papillo edema (malignant hypertension). Q J Med (New Series) 27: 117–153

    Google Scholar 

  71. Fitch W, MacKenzie ET, Harper AM (1975) Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon. Circ Res 37: 550–557

    PubMed  CAS  Google Scholar 

  72. Waldemar G, Schmidt JF, Andersen AR, Vorstrup S, Ibsen H, Paulson OB (1989) Angiotensin Converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hypertensive man. J Hypertens 7: 229–235

    Article  PubMed  CAS  Google Scholar 

  73. Paulson OB, Jarden JO, Vorstrup S, Holm S, Godtfredsen J (1986) Effect of Captopril on the cerebral circulation in chronic heart failure. Eur J Clin Invest 16: 124–132

    Article  PubMed  CAS  Google Scholar 

  74. Pedersen EV, Bobkiewicz-Kozlowska T, Waldemar G, Barry DI (1987) The renin angiotensin of cerebral arteries contributes to cerebrovascular resistance. Eur J Clin Invest 17: A38

    Article  Google Scholar 

  75. Waldemar G, Paulson OB, Barry DI, Knudsen GM (1989) Angiotensin Converting enzyme inhibition and the Upper limit of cerebral blood flow autoregulation: Effect of sympathetic Stimulation. Circ Res 64: 1197–1204

    PubMed  CAS  Google Scholar 

  76. Waldemar G (1990) Acute sympathetic denervation does not eliminate the effect of angiotensin Converting enzyme inhibition on CBF autoregulaton in spontaneously hypertensive rats. J Cereb Blood Flow Metab 10: 43–47

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paulson, O.B., Strandgaard, S. (1991). Zerebraler Kreislauf bei Hypertonie: Risiken und therapeutische Bedeutung. In: Schmieder, R.E., Müller, HM., Messerli, F.H. (eds) Endorganschädigungen der arteriellen Hypertonie — Konsequenzen für Diagnostik und Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76361-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76361-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53581-2

  • Online ISBN: 978-3-642-76361-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics