Advertisement

Comparison of Biplot Analysis and Formal Concept Analysis in the case of a Repertory Grid

  • Norbert Spangenberg
  • Karl Erich Wolff
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

We give a first comparison between the Principal Component Analysis PCA (“one of the oldest and best known techniques of multivariate analysis” cf. JOLLIFFE [6]) respectively of the analysis using biplots (GABRIEL [1], [2]) and an algebraic technique for the visualization of data, namely the Formal Concept Analysis FCA (WILLE [11]) by applying both methods to matrices, called Repertory Grids, which are the usual data form in many psychological investigations (SLATER [8]).

Keywords

Anorexia Nervosa Bulimia Nervosa Formal Concept Analysis Young Sister Line Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Gabriel, K.R. (1971): The biplot graphic display of matrices with application to principal component analysis. Biometrica 58, 453–467.MATHMathSciNetGoogle Scholar
  2. [2]
    Gabriel, K.R. (1981): Biplot display of multivariate matrices for inspection of data and diagnosis. In: V. Barnett (ed.): Interpreting multivariate data. Wiley, Chichester, 147–173.Google Scholar
  3. [3]
    Ganter, B., Stahl, J., Wille, R. (1986): Conceptual measurement and manyvalued contexts. In: Gaul, W., Schader, M. (eds.): Classification as a tool of research. North-Holland, Amsterdam, 169–176.Google Scholar
  4. [4]
    Ganter, B., Wille, R. (1988): Conceptual Scaling. FB4-Preprint Nr. 1174, TH Darmstadt.Google Scholar
  5. [5]
    Golub, G.H., Reinsch, C. (1971): Singular Value Decomposition and Least Squares Solutions. In: Wilkinson, J.H., Reinsch, C: Linear Algebra, Springer Verlag, Berlin, Heidelberg, New York, 134–151.Google Scholar
  6. [6]
    Jolliffe, I.T. (1986): Principal Component Analysis. Springer-Verlag, New York.Google Scholar
  7. [7]
    Roberts, F.S. (1979): Measurement theory. Addison-Wesley, Reading.Google Scholar
  8. [8]
    Slater, P. (1977): The measurement of interpersonal space by Grid Technique. Vol. I and II, Wiley, New York.Google Scholar
  9. [9]
    Spangenberg, N., Wolff, K.E. (1988): Conceptual grid evaluation. In: Bock, H.H. (ed.): Classification and related methods of data analysis. Proceedings of the First Conference of the International Federation of Classification Societies, Technical University of Aachen/FRG, 1987, North Holland, Amsterdam 577–580.Google Scholar
  10. [10]
    pangenberg, N., Wolff, K.E.: Formal Concept Analysis of Repertory Grids: A case study of a patient with Anorexia nervosa. To appear in the J. of Personality Assessment, Florida, USA.Google Scholar
  11. [11]
    Wille, R. (1982): Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.): Ordered Sets. Reidel, Dordrecht-Boston, 445–470.Google Scholar
  12. [12]
    Wille, R. (1987): Bedeutungen von Begriffsverbänden. In: Ganter, B., Wille, R., Wolff, K.E. (eds.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim/Wien/Zürich, 161–211.Google Scholar
  13. [13]
    Wille. R. (1989): Lattices in data analysis: How to draw them with a computer. In: Rival, I. (ed.): Algorithms and order. Kluver Academic Publishers, 33–58.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1991

Authors and Affiliations

  • Norbert Spangenberg
    • 1
  • Karl Erich Wolff
    • 2
  1. 1.Zentrum für Psychosomatische MedizinUniversität GießenGermany
  2. 2.FB Mathematik und NaturwissenschaftenFachhochschule Darmstadt, und Forschungsgruppe Begriffsanalyse, Technische Hochschule DarmstadtGermany

Personalised recommendations