Advertisement

An Immunosuppressive Factor Sharing Homology with the p15E Protein of Leukomogenic Retroviruses is Present in the Serum of Patients with Graves’ Disease

  • M. Tas
  • M. de Haan-Meulman
  • H. A. Drexhage
Conference paper

Abstract

Approximately 30% of CD14+ and nonspecific esterase-positive cells from the blood monocytic pool are able to differentiate into cells with a morphology and marker pattern of dendritic cells when cultured under nonadhering conditions. An exposure of the cells to metrizamide or thyroid hormones prior to the culture period enhances this differentiation step, and 40%–60% of cells with a dendritic morphology and marker pattern are obtained. The induced dendritic cells are functionally active, which is indicated by the fact that the cell population containing the dendritic cells has an enhanced stimulator capacity in mixed leukocyte reactions and an increased cluster capacity [1].

Keywords

Dendritic Cell Autoimmune Thyroiditis Serum Fraction Mixed Leukocyte Reaction Monocyte Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kabel PJ, de Haan-Meulman M, Voorbij HAM, Kleingeld M, Knol EF, Drexhage HA (1989) Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriator-purified blood monocyte fractions. An enhancing effect of metriza-mide in this differentiation. Immunobiology 179:395–411PubMedCrossRefGoogle Scholar
  2. 2.
    Austyn JM, Weinstein DE, Steinman RM (1988) Clustering with dendritic cells precedes and is essential for T cell proliferation in a mitogenesis model. Immunology 63:691PubMedGoogle Scholar
  3. 3.
    Kabel PJ, Voorbij HAM, de Haan-Meulman M, van der Gaag R, Drexhage HA (1988) In-trathyroidal dendritic cells. J Clin Endocrin Metab 66:199–207CrossRefGoogle Scholar
  4. 4.
    Smith PD, Ohura K, Masur H, Lane HC, Fauci AS, Wahl SM (1984) Monocyte function in the acquired immune deficiency syndrome. Defective Chemotaxis. J Clin Invest 74:2121PubMedCrossRefGoogle Scholar
  5. 5.
    Poli G, Botazzi B, Acero R, Bersani L, Rossi V, Introna M, Lazzarin A, Galli M, Mantovani A (1985) Monocyte function in intravenous drug abusers with lymphadenopathy syndrome and in patients with acquired immunodeficiency syndrome: selective impairment of Chemotaxis. Clin Exp Immunol 62:136PubMedGoogle Scholar
  6. 6.
    Cianciolo GJ, Snyderman R (1981) Monocyte responsiveness to chemotactic stimuli is a property of a subpopulation of cells that can respond to multiple chemoattractants. J Clin Invest 67:60PubMedCrossRefGoogle Scholar
  7. 7.
    Balm AJM, von Blomberg-van der Flier BME, Drexhage HA, de Haan-Meulman M, Snow GB (1984) Mononuclear phagocyte function in head and neck cancer: depression of murine macrophage accumulation by low molecular weight factors derived from head and neck carcinomas. Laryngoscope 94:223PubMedCrossRefGoogle Scholar
  8. 8.
    Tan IB, Drexhage HA, Scheper RJ, von Blomberg-van der Flier BME, de Haan-Meulman M, Snow GB, Balm AJM (1986) Defective monocyte Chemotaxis in patients with head and neck cancer. Restoration after treatment. Arch Otolaryngol Head Neck Surg 112:541PubMedCrossRefGoogle Scholar
  9. 9.
    van der Plassche-Boers EM, Tas M, de Haan-Meulman M, Kleingeld M, Drexhage HA (1988) Abnormal monocyte Chemotaxis in patients with chronic purulent rhinosinusitis; an effect of retroviral pl5E-related factors in serum. Clin Exp Immunol 73, 348Google Scholar
  10. 10.
    Mathes LE, Olsen RG, Hedebrand LC, Hoover EA, Schaller JP, Adams PW, Nicois WS (1979) Immunosuppressive properties of a virion polypeptide, a 15,000-dalton protein, from feline leukemia virus. Cancer Res 39, 950PubMedGoogle Scholar
  11. 11.
    Cianciolo GJ, Matthews TJ, Bolognesi DP, Synderman R (1980) Macrophage accumulation in mice is inhibited by low molecular weight products from murine leukemia viruses. J Immunol 124, 2900PubMedGoogle Scholar
  12. 12.
    Cianciolo GJ, Hunter J, Silva J, Haskill JS, Syndermann R (1981) Inhibitors of monocyte responses to chemotaxins are present in human cancerous effusions and react with monoclonal antibodies to the p15(E) structural protein of retroviruses. J Clin Invest 68, 831PubMedCrossRefGoogle Scholar
  13. 13.
    Tan IB, Drexhage HA, Scheper RJ, von Blomberg-van der Flier BME, de Haan-Meulman M, Snow GB, Balm AJM (1986) Immunosuppressive retroviral pl5E-related factors in head and neck carcinomas. Arch Otolaryngol Head Neck Surg 112, 942PubMedCrossRefGoogle Scholar
  14. 14.
    Cianciolo GJ, Phipps D, Synderman R (1984) Human malignant & mitogen-transformed cells contain retroviral pl5E related antigen. J Exp Med 159, 964PubMedCrossRefGoogle Scholar
  15. 15.
    Tan IB, Drexhage HA, Mullink H, Henzen-Logmans SC, de Haan-Meulman M, Snow GB, Balm AJM (1987) Immuno-histochemical detection of retroviral pl5E-related material in carcinomas of the head and neck. Otolaryngol Head and Neck Surg 96, 251Google Scholar
  16. 16.
    Ziemiecki A, Kromer G, Mueller RG, Hala K, Wick G (1988) Ev 22, a new endogenous avian leukosis virus locus found in chickens with spontaneous autoimmune thyroiditis. Arch Virol 100, 267–271PubMedCrossRefGoogle Scholar
  17. 17.
    Ciampolillo A, Mirakian R, Schulz T, Marini V, Buscema M, Pujol-Borrell R, Bottazzo GF (1989) Retrovirus-like sequences in Graves’ disease: implications for human autoimmunity. Lancet ii: 1096–1100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Tas
  • M. de Haan-Meulman
  • H. A. Drexhage

There are no affiliations available

Personalised recommendations