Skip to main content

Computer Vision

  • Conference paper
Advances in Computer Graphics

Part of the book series: EurographicSeminars ((FOCUS COMPUTER))

  • 157 Accesses

Abstract

Researchers in computer vision aim to make computers to do some of the things which the human visual system can do. Perhaps the major thing is the understanding of three-dimensional (3D) time-varying scenes. There are many applications: Inspection and quality control, monitoring and surveillance, navigation of mobile robots, etc. It is fair to say that computer scene understanding is still in a primitive state; most problems are unsolved. This makes computer vision a very challenging field to work in.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H.H., Huang, T.S.: A Survey of Construction and Manipulation of Octrees. Computer Vision, Graphics, and Image Processing (CVGIP) 43, 409–431 (1988)

    Article  Google Scholar 

  2. Agin, G.J., Binford, T.O.: Computer Analysis of Curved Objects. Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), 1973, pp. 629–640

    Google Scholar 

  3. Requicha, A.A.G.: Representations of Rigid Solids. ACM Computing Surveys 12, 437–464 (1980)

    Article  Google Scholar 

  4. Barrow, H.G.: Popplestone, R.J.: Relational Descriptions in Picture Processing. In B. Meltzer, D. Michie (eds.): Machine Intelligence, 6. Edinburgh Univ. Press, Edinburgh 1971

    Google Scholar 

  5. Horn, B.K.P.: Robot Vision. McGraw-Hill, 1986

    Google Scholar 

  6. Lee, H.C.: Method for Computing the Scene-Illuminant Chromaticity from Specular Highlights. Jour. Optical Society of America A (JOSA A) 3 (10), 1694–1699 (Oct. 1986)

    Article  Google Scholar 

  7. Wolff, L.B.: Shape from Photometric Flow Fields. Proc. SPIE, Optics, Illumination, and Image Sensing for Machine Vision, III, Cambridge, MA, Nov. 1988 1005, pp. 206–213

    Google Scholar 

  8. Wolff, L.B.: Shape from Photometric Flow Fields. Proc. SPIE, Optics, Illumination, and Image Sensing for Machine Vision, III, Cambridge, MA, Nov. 1988 1005, pp. 206–213

    Google Scholar 

  9. Will, P.M., Pennington, K.S.: Grid Coding: A Preprocessing Technique for Robot and Machine Vision. Artificial Intelligence 2, 319–329 (Winter 1971)

    Article  Google Scholar 

  10. Moffitt, F.H., Mikhail, E.M.: Photogrammetry, 3rd ed. Harper & Row, 1980

    Google Scholar 

  11. Marr, D.: Vision. W.H. Freeman, 1982

    Google Scholar 

  12. Grimson, W.E.L.: An Implementation of a Computational Theory of Visual Surface Interpolation. Computer Vision, Graphics, and Image Processing (CVGIP) 22 (1), 39–69 (April 1983)

    Article  MathSciNet  Google Scholar 

  13. Witkin, A.P.: Recovering Surface Shape and Orientation from Texture. Artificial Intelligence 17, 17–45 (1981)

    Article  Google Scholar 

  14. Kanade, T.: Recovery of the 3D Shape of an Object from a Single View. Artificial Intelligence 17, 409–460 (1981)

    Article  Google Scholar 

  15. Koenderink, J.J., van Doom, A.J.: The Internal Representation of Solid Shape with Respect to Vision. Biological Cybernetics 32, 211–216 (1979)

    Article  MATH  Google Scholar 

  16. Eggert, D., Bowyer, K.: Computing the Orthographic Projection Aspect Graph of Solids of Revolution. Proc. IEEE Workshop on Interpretation of 3D Scenes, Austin, TX, Nov. 1989, pp. 102–108

    Google Scholar 

  17. Ponce, J., Kriegman, D.J.: On Recognizing and Positioning Curved 3D Objects from Image Contours. Proc. IEEE Workshop on Interpretation of 3D Scenes, Austin, TX, Nov. 1989

    Google Scholar 

  18. Wallace, T.P., Mitchell, O.R.: Analysis of 3D Movement Using Fourier Descriptors. IEEE Trans. on PAMI 2 (6), 583–588 (Nov. 1980)

    Google Scholar 

  19. Cheng, J.K., Huang, T.S.: Image Registration by Matching Relational Structures. Pattern Recognition 17 (1), 149–160 (1984)

    Article  Google Scholar 

  20. Brooks, R.A.: Model-Based 3D Interpretation of 2D Images. Proc. 7th Int. Joint Conf. on Artificial Intelligence (IJCAI), 1981, pp. 619–624

    Google Scholar 

  21. Huang, T.S. (ed.): Image Sequence Processing and Dynamic Scene Analysis. Springer-Verlag, Heidelberg 1983

    Google Scholar 

  22. O’Rourke, J., Badler, N.: Model-Based Image Analysis of Human Motion Using Constraint Propagation. IEEE Trans. PAMI 2, 522–536 (1980)

    Google Scholar 

  23. Neumann, B.: Natural Language Description of Time-Varying Scenes. Bericht nr. 105, FBI-HH-B105/84. Fachberich Informatik, Univ. Hamburg, W. Germany, Aug. 1984

    Google Scholar 

  24. Borchardt, G.C.: A Computer Model for the Representation and Identification of Physical Events. Tech. Rep. T-142. Coordinated Science Laboratory, Univ. of Illinois, Urbana, IL, May 1984.

    Google Scholar 

  25. Huang, T.S.: Motion Analysis. In S. Shapiro (ed.): Artificial Intelligence Encylopedia. Wiley, 1987, pp.620–632.

    Google Scholar 

  26. Fang, J.Q., Huang, T.S.: A Corner Finding Algorithm for Image Analysis and Registration. Proc. AAAI-82, Pittsburgh, PA, Aug. 18–20,1982, pp. 46–49

    Google Scholar 

  27. Moravec, H.P.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Ph.D. dissertation, Stanford Univ., Stanford, CA, Sept. 1980

    Google Scholar 

  28. Fang, J.Q., Huang, T.S.: Some Experiments on Estimating the 3D Motion Parameters of a Rigid Body from Two Consecutive Image Frames. IEEE Trans. on PAMI 6 (5), 547–555 (Sept. 1984)

    Article  Google Scholar 

  29. Gu, W.K., Yang, J.Y., Huang, T.S.: Matching Perspective Views of a 3D Object Using Composite Circuits. Proc. 7th ICPR, July 30—Aug. 2, 1984

    Google Scholar 

  30. Longuet-Higgins, H.C.: A Computer Program for Reconstructing a Scene from Two Projections. Nature 293, 133–135 (Sept. 1981)

    Article  Google Scholar 

  31. Tsai, R.Y., Huang, T.S.: Uniqueness and Estimation of 3D Motion Parameters of Rigid Bodies with Curved Surfaces. IEEE Trans. PAMI 6 (1), 13–27 (1984)

    Article  Google Scholar 

  32. Longuet-Higgins, H.C.: The Reconstruction of a Scene from Two Projections-Configurations that Defeat the 8-Point Algorithm. Proc. 1st Conf. Artificial Intelligence Applications, Denver, CO, Dec. 5–7, 1984, pp. 395–397

    Google Scholar 

  33. Faugeras, O.D., Lustman, F., Toscasi, G.: Motion and Structure from Motion from Points and Lines. Proc. 1st Int. Conf. Computer Vision, London, England, June 8–11, 1987

    Google Scholar 

  34. Liu, Y.C., Huang, T.S.: Estimation of Rigid Body Motion Using Straight-Line Correspondences. Proceedings of IEEE Workshop on Motion: Representation and Analysis, Kiawah Island, SC, May 7–9, 1986, pp. 47–52

    Google Scholar 

  35. Spaetsakis, M.E., Aloimonos, J.: Closed Form Solution to the Structure from Motion Problem from Line Correspondences. Tech. Rept. CAR-TR-374. Center for Automation Research, Univ. of Maryland, March 1987

    Google Scholar 

  36. Liu, Y.C., Huang, T.S.: A Linear Algorithm for Motion Estimation Using Straight Line Correspondences. Tech. Note ISP-309. Coordinated Science Laboratory, Univ. of Illinois, Urbana, IL, April 15, 1987

    Google Scholar 

  37. Chen, H.H., Huang, T.S.: Multiple Object Motion Determination by Matching 3D Points. Pattern Recognition, (Dec. 1987)

    Google Scholar 

  38. Chen, H.H., Huang, T.S.: Multiple Object Motion Estimation by Matching 3D Line Segments. Tech. Note ISP-120. Coordinated Science Laboratory, Univ. of Illinois, Urbana, IL, Dec. 15, 1986.

    Google Scholar 

  39. Huang, T.S., Weng, J., Ahuja, N.: 3D Motion from Image Sequences: Modeling, Understanding, and Prediction. Proceedings of IEEE Workshop on Motion: Representation and Analysis, Kiawah Island, SC, May 7–9, 1986, pp. 125–130

    Google Scholar 

  40. Chen, S.S.: Shape and Correspondence of Nonrigid Objects. In T.S. Huang (ed.): Advances in Computer Vision and Image Processing, Vol. 3. JAI Press, 1987

    Google Scholar 

  41. Weng, J., Huang, T.S., Ahuja, N.: Error Analysis of Linear Algorithm for Motion Estimation. Proc. 1st Int. Conf. Computer Vision, London, England, June 8–11, 1987

    Google Scholar 

  42. Mikhail, E.M., Paderes, F.C.: Photogrammetric Series of Moving Vehicle. Scientific Services Program DAAL03–86-D-0001 (0683), CAI-RI, U.S. Army ETL, Fort Belvoir, VA, Nov. 1988

    Google Scholar 

  43. Leung, M.K., Huang, T.S.: Estimating 3D Vehicle Motion in an Outdoor Scene Using Stereo Image Sequences. Tech. Rep. ISP-1010. Coordinated Science Laboratory, Univ. of Illinois, Urbana, IL, Apr., 1990

    Google Scholar 

  44. Leung, M.K., Choudhary, A.N., Patel, J.H., Huang, T.S.: Point Matching in a Time Sequence of Stereo Image Pairs and its Parallel Implementation on a Multiprocessor. IEEE Workshop on Visual Motion, Irvine, CA, Mar. 1989

    Google Scholar 

  45. Kim, Y.C., Aggarwal, J.K.: Finding Range from Stereo Images. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, June 1985

    Google Scholar 

  46. Huang, T.S., Blostein, S.D., Margerum, E.A.: Least-Squares Estimation from 3D Point Correspondences. IEEE Conf. Computer Vision and Pattern Recognition, Miami Beach, FL, June 1986

    Google Scholar 

  47. Faugeras, O.D., Hebert, M.: A 3D Recognition and Positioning Algorithm Using Geometrical Matching Between Primitive Surfaces. Int. Joint Conf. Artificial Intelligence, Karlshrue, West Germany, Aug. 1983

    Google Scholar 

  48. Faugeras, O.D., Hebert, M.: A 3D Recognition and Positioning Algorithm Using Geometrical Matching Between Primitive Surfaces. Int. Joint Conf. Artificial Intelligence, Karlshrue, West Germany, Aug. 1983

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 EUROGRAPHICS The European Association for Computer Graphics

About this paper

Cite this paper

Huang, T.S. (1991). Computer Vision. In: Garcia, G., Herman, I. (eds) Advances in Computer Graphics. EurographicSeminars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76286-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76286-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76288-8

  • Online ISBN: 978-3-642-76286-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics