Skip to main content

Abstract

After an overview of the problems of deeply submerged transducers, this paper describes the classical pressure compensation methods. Historically, early research in this area was concerned with free-flooded transducers. For ten years, new solutions for deeply submerged tonpilz transducers have been developed, the most important being the air-compensated tonpilz (with an inner or outer deformable bellows) and the composite filter tonpilz. We present here each of these solutions and their field of application in sonar arrays. More recently, a new system has been developed for a great depth low frequency flextensional transducer for which results are presented. In conclusion, we discuss prospects for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.W. McMahon, “Performances of open Ferroelectric ceramic cylinders in underwater transducers,” J. Acoust. Soc. Am., 36 (1964).

    Google Scholar 

  2. A.S. Merriweatherl, U. S. Navy Electronics Lab. Memorandum (unpublished, 6 Oct. 1961) cited by G.W. McMahon.

    Google Scholar 

  3. M.C. Junger, “A variational solution of solid and free-flooding cylindrical sound radiators of finite length,” - “Mutual and Self radiation impedances in an array of free-flooding coaxial space ring transducers,”. Technical reports, U 177–48 and U 178–48; (March 1964) Cambridge Acoustical Associates, Inc.

    Google Scholar 

  4. W.T. Chin, “Self radiation impedances of a finite free-flooding cylindrical radiator with JUNGER’S End correction,” U.S.L. Technical Memorandum N° 960–75–64, August 1964 U.S. Navy Underwater Sound Laboratory, New London CT.

    Google Scholar 

  5. D.T. Porter, “Method for computing the electrical and acoustical behavior of freeflooded cylindrical transducer array,” J. Acoust. Soc. Am., 44 (1968).

    Google Scholar 

  6. J.P.D. Wilkinson, and M.J. Da Costa, “Underwater Behavior of free-flooded ceramic ring transducers journal of Engineering for industry,” Transactions of the ASME, August 1971.

    Google Scholar 

  7. R.R Smith, J.T. Hunt, and D. Barach, “Finite element analysis of acoustical radiating structure with application to sonar transducer,” J. Acoust. Soc. Am., 55 (1974).

    Google Scholar 

  8. M.R. Knittel, C.S. Nichols, R.R. Smith, and D. Barach, “Comments on Finite element analysis of acoustically radiating structure with application to sonar transducers,” J. Acoust. Soc. Am., 56 (1974).

    Google Scholar 

  9. R. Bossut, “Modélisation de transducteurs piézoélectriques annulaires immergés par la méthode des éléments finis,” Thèse de doctorat 3ème cycle - Université de Valenciennes, in French (1985).

    Google Scholar 

  10. B. Dubus, “Analyse des limitations de puissance des transducteurs piézoélectriques,” Thèse Doctorat en Physique, Université des Sciences et Techniques de Lille, in French (1989).

    Google Scholar 

  11. B. Tocquet, “Piezoelectric transducers and acoustic antennas which can be immersed to a great depth,” US Patent N° 4151437 (1977).

    Google Scholar 

  12. B. Tocquet, C. Pohlenz, and D. Boucher,“Transducteurs piézoélectriques et antennes de sonar pouvant être immergés à grande profondeur,” Brevet FR N° 8412833 (1984).

    Google Scholar 

  13. M. Lagier, “Transducteur électroacoustique pour immersion profonde,” Brevet FR N° 7437073 (1974).

    Google Scholar 

  14. H. Louit, and R. Gagno, “Transducteur électro-acoustique de puissance conçu pour les immersions grande profondeur,” Brevet FR n° 8101440 (1981).

    Google Scholar 

  15. A.W. Elston, and G.A. Vincent, Pressure compensated transducer US Patent 3, 241, 099 (1966).

    Google Scholar 

  16. G.R. Douglas, J.H. Thompson, and R.H. Whiltaker, “Pressure compensated transducer,” US Patent 3, 263, 208 (1963).

    Google Scholar 

  17. J.R. Oswin, and A. Turner, “Design limitations of aluminium shell, Class IV flextensional transducers,” Proc. Inst. Acoustics 5, part 3, (1984).

    Google Scholar 

  18. J.R. Oswin, and J. Dunn, “Frequency, Power and depth performance of Class IV flextensional transducers,” in Power Sonic and Ultrasonic Transducers Design (Edited by B. Hamonic and J.N. Decarpigny) Springer-Verlag Berlin Heidelberg (1988).

    Google Scholar 

  19. P. Dufourcq, “Low Frequency Flextensional Transducer modelling,” Proc. of the First French Conference on Acoustics, Jour, de Physique, FASC. 2, 1, C2-611–615 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dufourcq, P., Adda, J., Letiche, M., Sernit, E. (1991). Transducers for Great Depths. In: Hamonic, B.F., Decarpigny, JN., Wilson, O.B. (eds) Power Transducers for Sonics and Ultrasonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76271-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76271-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76273-4

  • Online ISBN: 978-3-642-76271-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics