Skip to main content

NMR Studies of Elementary Steps of Multiple Proton and Deuteron Transfers in Liquids, Crystals, and Organic Glasses

  • Chapter
Intermolecular Forces

Abstract

Dynamic high-resolution NMR spectroscopy of liquids and solids constitutes a convenient way to study kinetic hydrogen/deuterium isotope and solid-state effects on multiple proton transfer reactions in different environments. In the case of intramolecular double proton transfer reactions, evidence for stepwise reaction pathways is obtained; in each step only one proton jumps, whereas the other remains bound. By contrast, intermolecular double proton transfer reactions behave in a different way. Here, both protons are in flight in the rate-determining reaction step. The origin of the different behavior of both types of reactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7 References

  1. Limbach HH (1983) The use of NMR spectroscopy in the study of hydrogen bonding in solution. In: Gormally J, Wyn-Jones E (eds) Aggregation Processes, Elsevier, Amsterdam, Chap 16 and references cited therein

    Google Scholar 

  2. Limbach HH (1990) Dynamic NMR spectroscopy in the presence of kinetic hydrogen/ deuterium isotope effects. In: NMR Basic Principles and Progress, Vol 23, Springer, Heidelberg, and references cited therein

    Google Scholar 

  3. Limbach HH, Hennig J, Gerritzen D, Rumpel H (1982) Far Disc Chem Soc 74: 229

    Article  Google Scholar 

  4. Gerritzen D, Limbach HH (1984) J Am Chem Soc 106: 869

    Article  CAS  Google Scholar 

  5. Meschede L, Gerritzen D und Limbach HH (1988) Ber Bunsenges Phys Chem 92: 469

    CAS  Google Scholar 

  6. Limbach HH, Meschede L, und Scherer G (1989) Z Naturforschung, 44a: 459

    Google Scholar 

  7. Storm CB, Teklu Y (1974) J Am Chem Soc 94: 1745; Ann NY Acad Sci (1973) 206: 631

    Article  Google Scholar 

  8. Hennig J, Limbach HH (1984) J Am Chem Soc 106: 292

    Article  CAS  Google Scholar 

  9. Hennig J, Limbach HH (1982) J Magn Reson, 49: 322

    Article  CAS  Google Scholar 

  10. Schlabach M, Wehrle B, Limbach HH, Bunnenberg E, Knierzinger A, Shu A, Tolf BR, Djerassi C (1986) J Am Chem Soc 108: 3856

    Article  CAS  Google Scholar 

  11. Schlabach M, Rumpel H und Limbach HH (1989) Ang Chem 101:84; Int Ed Engl (1989) 28:76

    Article  CAS  Google Scholar 

  12. Rumpel H, Zachmann G, Limbach HH (1989) J Phys Chem 93: 1812

    Article  CAS  Google Scholar 

  13. Rumpel H, Limbach HH (1989) J Am Chem Soc 111: 5429

    Article  CAS  Google Scholar 

  14. Otting G, Rumpel H, Meschede L, Scherer G, Limbach HH (1986) Ber Bunsenges Phys Chem 90: 1122

    CAS  Google Scholar 

  15. Scherer G, Limbach HH (1989) J Am Chem Soc 111: 5946

    Article  CAS  Google Scholar 

  16. Limbach HH, Hennig J, Kendrick RD, Yannoni CS (1984) J Am Chem Soc 106: 4059

    Article  CAS  Google Scholar 

  17. Wehrle B, Limbach HH, Köcher M, Vogel E (1987) Ang Chem 99: 914; Int Ed Engl (1987) 26: 934

    Article  CAS  Google Scholar 

  18. Limbach HH, Wehrle B, Schlabach M, Kendrick R, Yannoni CS (1988) J Magn Reson 77:84

    Article  CAS  Google Scholar 

  19. Kendrick RD, Friedrich S, Wehrle B, Limbach HH, Yannoni CS (1985) J Magn Reson 65:159

    Article  CAS  Google Scholar 

  20. Wehrle B und Limbach HH (1989) Chem Phys 136: 223

    Article  CAS  Google Scholar 

  21. Meier BH, Storm CB, Earl WL (1986) J Am Chem Soc 108: 6072

    Article  CAS  Google Scholar 

  22. Limbach HH, Wehrle B, Zimmermann H, Kendrick RD, Yannoni CS (1987) J Am Chem Soc 109: 929

    Article  CAS  Google Scholar 

  23. Limbach HH, Wehrle B, Zimmermann H, Kendrick RD, Yannoni CS (1987) Angew Chem 99: 241; Angew Chem Int Ed Eng (1987) 26: 247

    Article  CAS  Google Scholar 

  24. Limbach HH, Zimmermann H und Wehrle B (1987) Ber Bunsenges Phys Chem 91: 941

    Google Scholar 

  25. Wehrle B, Zimmermann H, Limbach HH (1988) J Am Chem Soc 11: 7014

    Article  Google Scholar 

  26. Baldy A, Elguero J, Faure R, Pierrot M, Vincent EJ (1985) J Am Chem Soc 107: 5290

    Article  CAS  Google Scholar 

  27. Smith JAS, Wehrle B, Aguilar-Parrilla F, Limbach HH, Foces-Foces MC, Cano FH, Elguero J, Baldy A, Pierrot M, Khurshid MMT, Larcombe-McDouall JB (1989) J Am Chem Soc 111: 7304

    Article  CAS  Google Scholar 

  28. Völker S, van der Waals JH (1976) Mol Phys 32: 1703

    Article  Google Scholar 

  29. Friedrich J, Haarer D (1984) Angew Chem Int Ed Engl 23: 113

    Article  Google Scholar 

  30. Butenhoff TJ, Moore CB (1988) J Am Chem Soc 110: 8336

    Article  CAS  Google Scholar 

  31. Butenhoff TJ, Chuck RS, Limbach HH, Moore CB (1990) J Phys Chem 94: 7847

    Article  CAS  Google Scholar 

  32. Gandour RD, Schowen RL, Transition states of biochemical processes, Plenum Press, New York 1978

    Google Scholar 

  33. Hermes JD, Cleland WW (1984) J Am Chem Soc 106: 7263

    Article  CAS  Google Scholar 

  34. Limbach HH, Hennig J (1979) J Chem Phys 71: 3120

    Article  CAS  Google Scholar 

  35. Limbach HH, Hennig J, Stulz J (1983) J Chem Phys 78: 5432

    Article  CAS  Google Scholar 

  36. Limbach HH (1984) J Chem Phys 80: 5343

    Article  CAS  Google Scholar 

  37. Sarai A (1981) Chem Phys Lett 83: 50; (1982) J Chem Phys 76: 5554; (1984) ibid 80: 5341

    Article  CAS  Google Scholar 

  38. Bersuker GI, Polinger VZ (1984) Chem Phys 86: 57

    Article  CAS  Google Scholar 

  39. Smedarchina Z, Siebrand W, Zerbetto F (1989) Chem Phys 136: 285

    Article  CAS  Google Scholar 

  40. Dewar MJS, Merz KM (1985) J Mol Struct (Theochem) 124: 183

    Article  Google Scholar 

  41. Holloway KM, Reynolds CH, Merz, KM (1989) J Am Chem Soc 111: 3466

    Article  CAS  Google Scholar 

  42. Merz KM, Reynolds CH (1988) J Chem Soc Chem Comm 90

    Google Scholar 

  43. Bell RP, “The Tunnel Effect in Chemistry”, Chapman and Hall, London 1980

    Google Scholar 

  44. “The Hydrogen Bond”, Schuster P, Zundel G, Sandorfy C, Eds, North Holland Publ Comp, Amsterdam 1976

    Google Scholar 

  45. Bigeleisen J (1955) J Chem Phys 23: 2264

    Article  CAS  Google Scholar 

  46. Albery WJ (1986) J Phys Chem 90: 3773

    Article  Google Scholar 

  47. Novak A (1974) Struct Bond 14: 177

    Article  Google Scholar 

  48. Lyerla JR, Yannoni CS, Fyfe CA (1982) Acc Chem Res 15: 208

    Article  CAS  Google Scholar 

  49. Fyfe CA, Solid State NMR for Chemists, C.F.C. Press, Guelph, Ontario 1983

    Google Scholar 

  50. Schaeffer J, Steijskal EO (1976) J Am Chem Soc 98: 1031

    Article  Google Scholar 

  51. Szeverenyi NM, Bax A, Maciel GE (1983) J Am Chem Soc 105: 2579

    Article  CAS  Google Scholar 

  52. Myrrhe PC, Kruger JD, Hammond BL, Lok SM, Yannoni CS, Macho V, Limbach HH, Vieth HM (1984) J Am Chem Soc 106: 6079

    Article  Google Scholar 

  53. Robertson JM (1936) J Chem Soc 7719

    Google Scholar 

  54. Karasek FW, Decius JC (1952) J Am Chem Soc 74: 7716

    Article  Google Scholar 

  55. Hoskins BF, Mason SA, White JCB (1969) J Chem Soc Chem Comm 554

    Google Scholar 

  56. Webb LE, Fleischer EB (1965) J Chem Phys 43: 3100

    Article  CAS  Google Scholar 

  57. Chen BML, Tulinsky A (1972) J Am Chem Soc 94: 4144

    Article  CAS  Google Scholar 

  58. Tulinsky A (1973) Ann NY Acad Sci 206: 47

    Article  CAS  Google Scholar 

  59. Hamor MJ, Hamor TA, Hoard JL (1964) J Am Chem Soc, 86: 1938

    Article  CAS  Google Scholar 

  60. Silvers SJ, Tulinsky A (1967) J Am Chem Soc 89: 3331

    Article  CAS  Google Scholar 

  61. Butcher RJ, Jameson GB, Storm CB (1985) J Am Chem Soc 107: 2978

    Article  CAS  Google Scholar 

  62. Goedken VL, Pluth JJ, Peng SM, Bursten B (1976) J Am Chem Soc 98: 8014

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Limbach, HH. (1991). NMR Studies of Elementary Steps of Multiple Proton and Deuteron Transfers in Liquids, Crystals, and Organic Glasses. In: Huyskens, P.L., Luck, W.A.P., Zeegers-Huyskens, T. (eds) Intermolecular Forces. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76260-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76260-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76262-8

  • Online ISBN: 978-3-642-76260-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics