Intermolecular Forces

  • Th. Zeegers-Huyskens
  • P. Huyskens

Abstract

No fundamental difference exists between cohesion forces and chemical bonds. They chiefly originate from coulombic interactions between charged particles. Repulsion forces are only important when the distance between the atoms falls-below the sum of the van der Waals radii. Van der Waals forces are cohesive attractions between molecules that are already active at long interdistances. They result from interactions between permanent, induced or temporary electric dipoles. The last are called “dispersion forces”. Specific interactions are cohesion forces that are only effective when so called specific sites of both molecules come into contact. In fact, specific interactions, as for instance hydrogen bonds, are short-range site-bounded cohesion forces that considerably weaken a given chemical bond of one of the partners. In the A-H...B hydrogen bond, the interdistance between the proton and the nearest nucleus of B is much shorter than the sum of the van der Waals radii, the distance A-H is larger than in the unperturbed molecule and the cohesion energy is intermediate between that of pure dispersion forces in the liquid state and the energy of normal chemical bonds. Hydrogen bonds appear as an intermediate step of the transfer of a proton from AH to B. In this transfer a new chemical bond BH+ is formed. H-bonds already share two characteristics of the chemical bonds: the stoichiometry and the directionality. In contrast their lifetime is very short. These characteristics are also those of the so-called n-σ EDA bonds. The energy of a hydrogen bond is governed by the difference in proton affinity of B and the anion A- A quantitative expression is proposed.

Keywords

Acidity Ketone Sponge Nitrile Pentane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3 References

  1. 1.
    Selected values from McClellan Al (1974) Tables of Experimental Dipole Moments. Rahara Enterprises, El CerritoGoogle Scholar
  2. 2.
    Huyskens PL (1989) J Mol Struct 198: 123CrossRefGoogle Scholar
  3. 3.
    Selected experimental data from Weast RC, Astle MJ (1980) CRC Handbook of Chemistry and Physics, CRC Press Boca Raton FlGoogle Scholar
  4. 3.
    Zwolinski BJ, Wilhoit RC (1971) Vapor pressures and heats of vaporization of hydrocarbons and related compounds Thermodynamics Research Center College StationGoogle Scholar
  5. 3.
    Wilhoit RC, Zwolinski BJ (1973) J Phys Chem Ref Data 2: 23Google Scholar
  6. 3.
    Roth W, Scheel K (1936) Landolt-Börnstein Physikalische Chemische Tabellen, Springer Berlin (1984)Google Scholar
  7. 4.
    Schrems O, Oberhoffer H, Luck W (1984) J Phys Chem 88: 4335CrossRefGoogle Scholar
  8. 5.
    Luck WAP (1986) Acta Chim Hungar 121: 119Google Scholar
  9. 6.
    Huyskens PL (1986) J Mol Struct 135: 67Google Scholar
  10. 7.
    Huyskens PL (1987) Pure and Applied Chem 59: 1103CrossRefGoogle Scholar
  11. 8.
    Novak A (1974) Structure and Bonding 18: 177CrossRefGoogle Scholar
  12. 9.
    Ratajczak H, Sobczyk L (1969) J Chem Phys 50: 556CrossRefGoogle Scholar
  13. 10.
    Zeegers-Huyskens T, Huyskens P (1980) in: Ratajczak H, Orville-Thomas WJ (eds) Molecular Interactions, vol 2, J Wiley; and references hereinGoogle Scholar
  14. 11.
    Legon AC, Millen DJ (1987) Chem Soc Rev 16: 467CrossRefGoogle Scholar
  15. 12.
    Morokuma K (1971) J Chem Phys 55: 1236CrossRefGoogle Scholar
  16. 13.
    Del Bene JE (1975) J Chem Phys 62: 1314CrossRefGoogle Scholar
  17. 14.
    Huyskens PL, Cleuren W, Van Brabant-Govaerts HM, Vuylsteke MA (1980) 84: 2740Google Scholar
  18. 15.
    Olovsson I. Jönsson, PG (1976) in Schuster P, Zundel G, Sandorfy C (eds) The Hydrogen Bond II, North Holland, AmsterdamGoogle Scholar
  19. 16.
    Johnson GL, Andrews L (1982) J Am Chem Soc 104: 3043CrossRefGoogle Scholar
  20. 17.
    Kunnig IJ, Szczesniak MM, Scheiner S (1986) J Phys Chem 90: 4253CrossRefGoogle Scholar
  21. 18.
    Aue DH, Bowers MT in Bowers MT (ed) (1979) Gas-Phase Ion Chemisry, Academic Press, New York, p 1Google Scholar
  22. 19.
    Lias SG, Liebman JF, Levin RD (1984) J Phys chem Ref Data, 13: 695CrossRefGoogle Scholar
  23. 20.
    Bartness JE, Scott JA, McIver RT (1876) J Am Chem Soc 101: 6046CrossRefGoogle Scholar
  24. 21.
    Larson JW, McMahon TB (1984) J Am Chem Soc 106: 517CrossRefGoogle Scholar
  25. 22.
    Davis DW (1985) J Mol Struct 127: 337CrossRefGoogle Scholar
  26. 23.
    Taft RW (1983) Prog Phys Org Chem 14: 247 (and references herein)CrossRefGoogle Scholar
  27. 24.
    Ault BS, Pimentel GC (1975) J Phys Chem 79: 615CrossRefGoogle Scholar
  28. 25.
    Zeegers-Huyskens Th (1990) J Mol Struct 217: 239CrossRefGoogle Scholar
  29. 26.
    Mielke Z, Barnes AJ (1986) J Chem Soc Faraday Trans 2 82: 437CrossRefGoogle Scholar
  30. 27.
    Barnes AJ, Beeck TR, Mielke Z (1984) J Chem Soc Faraday Trans 2 80: 455CrossRefGoogle Scholar
  31. 28.
    Barnes AJ, Szczepaniak K, Orville-Thoms WJ (1980) J Mol Struct 59: 39CrossRefGoogle Scholar
  32. 29.
    Barnes AJ, Kuzniarski JN, Mielke Z (1984) J Chem Soc Faraday Trans 2 80: 466Google Scholar
  33. 30.
    Johnson GL, Andrews L (1982) J Am Chem Soc 104: 3043CrossRefGoogle Scholar
  34. 31.
    Andrews L, Davis SR, Johnson GL (1986) J Phys Chem 90: 4273CrossRefGoogle Scholar
  35. 32.
    Davidson WR, Sunner J, Kebarle P (1979) J Am Chem Soc 101: 1675CrossRefGoogle Scholar
  36. 33.
    Desmeules DJ, Allen LC (1980) J Chem Phys 72: 4731CrossRefGoogle Scholar
  37. 34.
    Meot-Ner (Mautner) M (1984) J Am Chem Soc 106: 1257CrossRefGoogle Scholar
  38. 35.
    Sieck LW, Meot Ner (Mautner) M (1989) J Phys Chem 93: 1586CrossRefGoogle Scholar
  39. 36.
    Meot-Ner (Mautner) M, Sieck LW (1985) J Phys Chem 89: 5222CrossRefGoogle Scholar
  40. 37.
    Meot-Ner (Mautner) M, Sieck LW (1986) J Am Chem Soc 108: 7525CrossRefGoogle Scholar
  41. 38.
    Yamdagni R, Kebarle P (1971) J Am Chem Soc 93: 7139CrossRefGoogle Scholar
  42. 39.
    Caldwell G, Kebarle P (1984) J Am Chem Soc 106: 967CrossRefGoogle Scholar
  43. 40.
    Zeegers-Huyskens T (1986) Chem Phys Lett 129: 172CrossRefGoogle Scholar
  44. 41.
    Zeegers-Huyskens T (1988) J Mol Struct 177: 125CrossRefGoogle Scholar
  45. 42.
    Kollman PA, Allen LC (1970) J Am Chem Soc 92: 6101CrossRefGoogle Scholar
  46. 43.
    Del Bene JE, Frisch MJ, Pople JA (1985) J Phys Chem 89: 3669CrossRefGoogle Scholar
  47. 44.
    Scheiner S, Bigham LD (1985) J Chem Phys 82: 3316CrossRefGoogle Scholar
  48. 45.
    Scheiner S, Redfern P (1986) J Phys Chem 90: 2969CrossRefGoogle Scholar
  49. 46.
    Delpuech J, Serratrice G, Streck A, Veillard A (1975) Mol Phys 29: 849CrossRefGoogle Scholar
  50. 47.
    Merlet P; Peyerimhoff SD, Buenker RJ (1972) J Am Chem Soc 94: 8301CrossRefGoogle Scholar
  51. 48.
    Hiraoka K, Takimoto H, Yamabe S (1986) J Phys Chem 90: 5910CrossRefGoogle Scholar
  52. 49.
    Hiraoka K, Kebarle P (1975) J Am Chem Soc 97: 4179CrossRefGoogle Scholar
  53. 50.
    Fujio M, Mclver RT, Taft RW (1981) J Am Chem Soc 103: 4017CrossRefGoogle Scholar
  54. 51.
    Arnett EM, Chawla B, Bell L, Taagepera M, Hehre WJ, Taft RW (1977) J Am Chem Soc 99:5729CrossRefGoogle Scholar
  55. 52.
    Law YK, Nishizawa K, Tse A, Brown RS, Kebarle P (1981) J Am Chem Soc 103: 6291CrossRefGoogle Scholar
  56. 53.
    Zeegers-Huyskens T (1986) J Mol Liquids 32: 191CrossRefGoogle Scholar
  57. 54.
    Huyskens P, Zeegers-Huyskens T (1964) J Chim Phys 61: 81Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Th. Zeegers-Huyskens
  • P. Huyskens

There are no affiliations available

Personalised recommendations