The Fossil and Modern Fish Faunas of Antarctica: Evolution and Diversity

  • J. T. Eastman


The paleontological exploration of Antartica is constrained by unusual physiographic conditions. For example, the average thickness of the ice cap is 2160 m and only 2.4% of the continent’s rock surface is exposed above the ice at various coastal and mountainous sites (Drewry 1983). Antarctica has also experienced extreme tectonic displacement and accompanying paleoenvironmental change during geologic time. Nevertheless, the existing fossil record indicates that fish have inhabited waters in and around Antarctica at various intervals during the past several hundred million years. These faunas are separated by large gaps in time and are not ancestral to each other. Collectively, however, they indicate that freshwater and marine biotas diversified in the antarctic component of Gondwana at specific intervals during the Paleozoic, Mesozoic and Cenozoic eras.


Late Cretaceous Southern Ocean Fossil Record Antarctic Peninsula Middle Devonian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen NC (1984) Genera and subfamilies of the family Nototheniidae (Pisces, Perciformes) from the Antarctic and Subantarctic. Steenstrupia 10:1–34Google Scholar
  2. Andriashev AP (1965) A general review of the antarctic fish fauna. In: van Oye P, van Mieghem J (eds) Biogeography and ecology in Antarctica, Monographiae Biologicae, vol XV. Junk, The Hague, pp 491–550Google Scholar
  3. Andriashev AP (1987) A general review of the antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proc V Congr Europ Ichthyol, Stockholm 1985. Swed Mus Nat Hist Stockholm, pp 357–372Google Scholar
  4. Askin RA (1988) The palynological record across the Cretaceous/Tertiary transition on Seymour Island, Antarctica. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island, Antarctic Peninsula. Geol Soc Am Mem 169. Geol Soc Am, Boulder, Colorado, pp 155–162Google Scholar
  5. Askin RA (1989) Endemism and heterochroneity in the late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. In: Crame JA (ed) Origins and evolution of the antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond, pp 107–119Google Scholar
  6. Ayling T (1982) Collins guide to the sea fishes of New Zealand. Collins Auckland, 343 ppGoogle Scholar
  7. Becker GC (1983) Fishes of Wisconsin. Univ Wisconsin Press, Madison, 1052 ppGoogle Scholar
  8. Carroll RL (1988) Vertebrate paleontology and evolution. Freeman New York, 698 ppGoogle Scholar
  9. Case JA (1989) Antarctica: the effect of high latitude heterochroneity on the origin of Australian marsupials. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond, pp 217–226Google Scholar
  10. Cione AL, Medina FA (1987) A record of Notidanodon pectinatus (Chondrichthyes, Hexanchi-formes) in the Upper Cretaceous of the Antarctic Peninsula. Mesozoic Res 1:79–88Google Scholar
  11. Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Ann Rev 21:341–453Google Scholar
  12. Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond pp 253–268Google Scholar
  13. Colbert EH (1982) Triassic vertebrates in the Transantarctic Mountains. In: Turner MD, Splettstoesser JE (eds) Antarctic research series, vol 36. Geol Central Transantarctic Mountains. Am Geophys Union, Washington, pp 11–35CrossRefGoogle Scholar
  14. Compagno LJV (1988) Sharks of the order Carcharhiniformes. Univ Press, Princeton, 486 ppGoogle Scholar
  15. Craddock C (1982) Antarctica and Gondwanaland. In: Craddock C (ed) Antarctic geoscience. Int Union Geol Sci Ser B, No. 4 Univ Wisconsin Press, Madison, pp 3–13Google Scholar
  16. Dell RK (1972) Antarctic benthos. In: Russell FS, Yonge M (eds) Advances in marine biology, vol 10. Academic Press, London, pp 1–216Google Scholar
  17. Dettmann ME (1989) Antarctica: Cretaceous cradle of austral temperate rainforests? In: Crame JA (ed) Origins and evolution of the antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond, pp 89–105Google Scholar
  18. DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. Antarct Map Folio Ser 15:1–10Google Scholar
  19. Doktor M, Gazdzicki A, Marenssi SA, Porebski SJ, Santillana N, Vrba AV (1988) Argentine-Polish geological investigations on Seymour (Marambio) Island, Antarctica, 1988. Pol Polar Res 9:521–541Google Scholar
  20. Drewry DJ (1983) Antarctica: glaciological and geophysical folio. Scott Polar Res Inst, Cambridge, England, 9 sheetsGoogle Scholar
  21. Dziewa TJ (1980) Note on a dipnoan fish from the Triassic of Antarctica. J Paleontol 54:488–490Google Scholar
  22. Eastman JT (1985) The evolution of neutrally buoyant notothenioid fishes: their specializations and potential interactions in the antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer Berlin Heidelberg New York Tokyo pp 430–436Google Scholar
  23. Eastman JT (1991) Evolution and diversification of antarctic notothenioid fishes Am Zool 31:93–109Google Scholar
  24. Eastman JT, DeVries AL (1981) Buoyancy adaptations in a swim-bladderless antarctic fish. J Morphol 167:91–102CrossRefGoogle Scholar
  25. Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 2:385–393CrossRefGoogle Scholar
  26. Eastman JT, Grande L (1989) Evolution of the antarctic fish fauna with emphasis on the recent notothenioids. In: Crame JA (ed) Origins and evolution of the antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond, pp 241–252Google Scholar
  27. Eastman JT, Grande L (1991) A late Eocene gadiform (Teleostei) skull from Seymour Island, Antarctic Peninsula. Antarct Sci 3:87–95CrossRefGoogle Scholar
  28. Elliot DH (1985) Physical geography-geological evolution. In: Bonner WN, Walton DWH (eds) Key environments: Antartica. Pergamon Press, Oxford, pp 39–61Google Scholar
  29. Feldmann RM, Tshudy DM (1989) Evolutionary patterns in macruronus decapod crustaceans from Cretaceous to early Cenozoic rocks of the James Ross Island region, Antarctica. In: Crame JA (ed) Origins and evolution of the antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond, pp 183–195Google Scholar
  30. Fischer W, Hureau JC (eds) (1985) FAO species identification sheets for fishery purposes, Southern Ocean, vol 1. FAO, Rome, 232 ppGoogle Scholar
  31. Fordyce E (1982) The fossil vertebrate record of New Zealand. In: Rich PV, Thompson EM (eds) The fossil vertebrate record of Australasia. Monash Univ Offset Printing Unit, Clayton, pp 629–698Google Scholar
  32. Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Inst Ichthyol, Grahamstown, South Africa, 462 ppGoogle Scholar
  33. Grande L, Chatterjee S (1987) New Cretaceous fish fossils from Seymour Island, Antarctic Peninsula. Paleontology 30:829–837Google Scholar
  34. Grande L, Eastman JT (1986) A review of antarctic ichthyofaunas in the light of new fossil discoveries. Paleontology 29:113–137Google Scholar
  35. Harwood DM (1986) Recycled siliceous microfossils from the Sirius Formation. Antarct J US 21(5):101–103Google Scholar
  36. Harwood DM (1987) Diatom biostratigraphy and paleoecology with a Cenozoic history of antarctic ice sheets. Diss Abstr Int 47B:3276–3277Google Scholar
  37. Hedgpeth JW (1969) Introduction to antarctic zoogeography. In: Bushneil VC, Hedgpeth JA (eds) Distribution of selected groups of marine invertebrates in waters south of 35° S latitude, Antarctic Map Folio Ser, Folio 11. Am Geog Soc, New York, pp 1–9Google Scholar
  38. Jerzmanska A (1988) Isolated vertebrae of teleostean fishes from the Paleogene of Antarctica. Pol Polar Res 9:421–435Google Scholar
  39. Kennett JP (1978) The development of planktonic biogeography in the Southern Ocean during the Cenozoic. Mar Micropaleontol 3:301–345CrossRefGoogle Scholar
  40. Kennett JP (1980) Paleoceanographic and biogeographic evolution of the Southern Ocean during the Cenozoic, and Cenozoic microfossil datums. Palaeogeogr Palaeoclim Palaeoecol 31:123–152CrossRefGoogle Scholar
  41. Kennett JP (1982) Marine geology. Prentice Hall, Englewood Cliffs, New Jersey, 813 ppGoogle Scholar
  42. Kuhn-Schnyder E, Rieber H (1986) Handbook of paleozoology. Hopkins Univ Press, Baltimore, 394 ppGoogle Scholar
  43. Last PR, Scott EOG, Talbot FH (1983) Fishes of Tasmania. Tasmanian Fish Develop Authority, Hobart, 563 ppGoogle Scholar
  44. Leim AH, Scott WB (1966) Fishes at the Atlantic coast of Canada. Fish Res Board Can, Bull 155, Ottawa, 485 ppGoogle Scholar
  45. Long J (1982) The history of fishes on the Australian continent. In: Rich PV, Thompson EM (eds) The fossil vertebrate record of Australasia. Monash Univ Offset Printing Unit, Clayton, pp 53–85Google Scholar
  46. Miller RG (1987) Origins and pathways possible for the fishes of the Antarctic Ocean. In: Kullander SO, Fernholm B (eds) Proc V Congr Europ Ichthyol, Stockholm 1985. Swed Mus Nat Hist, Stockholm, pp 373–380Google Scholar
  47. Moy-Thomas JA, Miles RS (1971) Palaeozoic fishes, 2nd edn. Saunders, Philadelphia, 259 ppGoogle Scholar
  48. Moyle PB, Cech JJ Jr (1988) Fishes: an introduction to ichthyology, 2nd edn. Prentice Hall, Englewood Cliffs, New Jersey, 559 ppGoogle Scholar
  49. Nelson JS (1984) Fishes of the world, 2nd edn. Wiley, New York, 523 ppGoogle Scholar
  50. Norman JR (1938) Coast fishes. Part III. The Antarctic zone. Discovery Rep 18:1–104Google Scholar
  51. Norton IO (1982) Paleomotion between Africa, South America, and Antarctica, and implications for the Antarctic Peninsula. In: Craddock C (ed) Antarctic geoscience. International Union of Geological Sciences, Ser B, No 4. Univ Wisconsin Press, Madison, pp 99–106Google Scholar
  52. Parrish JT (1990) Gondwanan paleogeography and paleoclimatology. In: Taylor TN, Taylor EL (eds) Antarctic paleobiology: its role in the reconstruction of Gondwana. Springer Berin Heidelberg New York Tokyo, pp 15–26Google Scholar
  53. Pickard J, Adamson DA, Harwood DM, Miller GH, Quilty PG, Dell RK (1988) Early Pliocene marine sediments, coastline, and climate of East Antarctica. Geology 16:158–161CrossRefGoogle Scholar
  54. Regan CT (1914) Fishes. Br Antarct (“Terra Nova”) Exped 1910, Nat Hist Rep, Zool 1:1–54Google Scholar
  55. Rich PV, Rich TH, Wagstaff BE, McEwen Mason J, Douthitt CB, Gregory RT, Felton EA (1988) Evidence for low temperatures and biologic diversity in Cretaceous high latitudes of Australia. Science 242:1403–1406PubMedCrossRefGoogle Scholar
  56. Richter M, Thomson MRA (1989) First Aspidorhynchidae (Pisces: Teleostei) from Antarctica. Antarct Sci 1:57–64CrossRefGoogle Scholar
  57. Richter M, Ward DJ (1990) Fish remains from the Santa Marta Formation (Late Cretaceous) of James Ross Island, Antarctica. Antarct Sci 2:67–76CrossRefGoogle Scholar
  58. Romer AS (1966) Vertebrate paleontology, 3rd edn. Univ Chicago Press, Chicago, 468 ppGoogle Scholar
  59. Schaeffer B (1972) A Jurassic fish from Antarctica. Am Mus Novit 2495:1–17Google Scholar
  60. Smith AG, Hurley AM, Briden JC (1981) Phanerozoic paleocontinental world maps. Univ Press, Cambridge, 102 ppGoogle Scholar
  61. Smith MM, Heemstra PC (eds) (1986) Smith’s sea fishes. Macmillan South Africa Johannesburg, 1047 ppGoogle Scholar
  62. Stinton FC (1957) Teleostean otoliths from the Tertiary of New Zealand. Trans R Soc New Zeal 84:513–517Google Scholar
  63. Tasch P (1977) Ancient antarctic freshwater ecosystems. In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, pp 1077–1089Google Scholar
  64. Watling L, Thurston MH (1989) Antarctica as an evolutionary incubator: evidence from the cladistic biogeography of the amphipod Family Iphimediidae. In: Crame JA (ed) Origins and evoution of the antarctic biota. Geo Soc Spec Publ 47, Geol Soc Lond, pp 297–313Google Scholar
  65. Watts RL, Watts DC (1974) Nitrogen metabolism in fishes. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 8. Academic Press New York, pp 369–446Google Scholar
  66. Webb PN (1990) The Cenozoic history of Antarctica and its global impact. Antarct Sci 2:3–21CrossRefGoogle Scholar
  67. Webb PN, Harwood DM (1987) Terrestrial flora of the Sirius Formation: its significance for late Cenozoic glacial history. Antarct J US 22(4):7–11Google Scholar
  68. Webb PN, Harwood DM, McKelvey BC, Mercer JH, Stott LD (1984) Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology 12:287–291CrossRefGoogle Scholar
  69. Welton BJ, Zinsmeister WJ (1980) Eocene neoselachians from the La Meseta Formation, Seymour Island, Antarctic Peninsula. Contrib Sci Nat Hist Mus Los Angeles Co 329:1–10Google Scholar
  70. Woodburne MO, Zinsmeister WJ (1984) The first land mammal from Antarctic and its biogeographic implications. J Paleontol 58:913–948Google Scholar
  71. Woodward AS (1908) On fossil fish-remains from Snow Hill and Seymour Islands. Wiss Ergeb Schwed Südpolar-Exped 1901–1903 3:1–4Google Scholar
  72. Young GC (1989) The Aztec fish fauna (Devonian) of Southern Victoria Land: Evolutionary and biogeographic significance. In: Crame JA (ed) Origins and evolution of the antarctic biota. Geol Soc Spec Publ 47, Geol Soc Lond, pp 43–62Google Scholar
  73. Young VT (1986) Early Devonian fish material from the Horlick Formation, Ohio Range, Antarctica. Alcheringa 10:35–44CrossRefGoogle Scholar
  74. Zinsmeister WJ (1987) Cretaceous paleogeography of Antarctica. Paleogeogr Paleoclim Paleoecol 59:197–206CrossRefGoogle Scholar
  75. Zinsmeister WJ, Feldmann RM (1984) Cenozoic high latitude heterochroneity of Southern Hemisphere marine faunas. Science 224:281–283PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. T. Eastman
    • 1
  1. 1.Department of Zoological and Biomedical SciencesOhio UniversityAthensUSA

Personalised recommendations