Advertisement

The Biochemistry of Oxygen Transport in Red-Blooded Antarctic Fish

  • G. di Prisco
  • R. D’Avino
  • C. Caruso
  • M. Tamburini
  • L. Camardella
  • B. Rutigliano
  • V. Carratore
  • M. Romano

Abstract

The temperature of the coastal antarctic waters, in which fish from temperate waters would be unable to survive, is close to the constant value of −1.87 °C, the equilibrium temperature of the ice-seawater mixture. During the increasing geographic and climatic isolation south of the Antarctic Convergence, initiated approximately 65 Ma, the physiology of antarctic fish became gradually adjusted to tolerate the progressive cooling of the environment. Because of the development of cold adaptation, the Antarctic Ocean is now the ideal habitat for the fish fauna, by virtue of the evolutionary response at different levels of life organization (organ, cell, molecule) to the many constraints of this habitat. The Convergence became a natural barrier to migration in both directions, thus representing a key factor for fish isolation and evolution.

Keywords

Oxygen Transport Oxygen Affinity Oxygen Binding Antarctic Fish Bohr Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen NC (1984) Genera and subfamilies of the family Nototheniidae (Pisces, Perciformes) from the Antarctic and Subantarctic. Steenstrupia 10:1–34Google Scholar
  2. Andriashev AP (1987) A general review of the antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proc V Congr Europ Ichthyol, Stockholm 1985. Swed Mus Nat Hist, pp 357–372Google Scholar
  3. Anthony EH (1961) Survival of goldfish in the presence of carbon monoxide. J Exp Biol 38:109–129Google Scholar
  4. Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature (Lond) 237:146–149CrossRefGoogle Scholar
  5. Barra D, Bossa F, Brunori M (1981) Structure of binding sites for heterotropic effectors in fish hemoglobins. Nature (Lond) 293:587–588CrossRefGoogle Scholar
  6. Binotti I, Giovenco S, Giardina B, Antonini E, Brunori M, Wyman J (1971) Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch Biochem Biophys 142:274–280PubMedCrossRefGoogle Scholar
  7. Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–481Google Scholar
  8. Carey F, Teal J (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci US 56:1464–1469CrossRefGoogle Scholar
  9. D’Avino R, di Prisco G (1988) Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties. 1. Molecular structure. Comp Biochem Physiol 90B:579–584Google Scholar
  10. D’Avino R, di Prisco G (1989) Hemoglobin from the antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterization. Eur J Biochem 179:699–705PubMedCrossRefGoogle Scholar
  11. D’Avino R, Caruso C, Romano M, Camardella L, Rutigliano B, di Prisco G (1989a) Hemoglobin from the antarctic fish Notothenia coriiceps neglecta. 2. Amino acid sequence of the α chain of Hb 1. Eur J Biochem 179:707–713PubMedCrossRefGoogle Scholar
  12. D’Avino R, Caruso C, Schininà ME, Rutigliano B, Romano M, Camardella L, Bossa F, Barra D, di Prisco G (1989b) The amino acid sequence of the α- and β-chains of the two hemoglobins of the antarctic fish Notothenia coriiceps neglecta. FEBS Lett 250:53–56PubMedCrossRefGoogle Scholar
  13. D’Avino R, Caruso C, Schininà ME, Rutigliano B, Romano M, Camardella L, Bossa F, Barra D, di Prisco G (1990) Hemoglobin from the antarctic fish Notothenia coriiceps neglecta. Amino acid sequence of the beta chain. Comp Biochem Physiol 96B:367–373Google Scholar
  14. DeVries AL (1980) Biological antifreezes and survival in freezing environments. In: Gilles R (ed) Animals and environmental fitness. Pergamon Press, Oxford, pp 583–607Google Scholar
  15. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution and pathology. Benjamin/Cummings, Menlo Park, CAGoogle Scholar
  16. di Prisco G (1986a) Antarctic fishes and cold adaptation. Proc 1st Symp on Mar Biochem, Ital Biochem Soc, Grasso, Bologna, pp 51–68Google Scholar
  17. di Prisco G (1986b) Functional properties of hemoglobin from antarctic fishes. Antarct J US 21(5):215–216Google Scholar
  18. di Prisco G (1988) A study of hemoglobin in antarctic fishes: Purification and characterisation of hemoglobins from four species. Comp Biochem Physiol 90B:631–637Google Scholar
  19. di Prisco G, D’Avino R (1989) Molecular adaptation of the blood of antarctic teleosts to environmental conditions. Antarct Sci 1:119–124CrossRefGoogle Scholar
  20. di Prisco G, D’Avino R, Condò S, Giardina B, Brunori M (1986) Regulatory effects on oxygen binding in antarctic fish hemoglobin. Proc 1st Symp on Mar Biochem, Ital Biochem Soc, Grasso, Bologna, pp 113–115Google Scholar
  21. di Prisco G, Giardina B, D’Avino R, Condò SG, Bellelli A, Brunori M (1988) Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties — II. Oxygen binding properties. Comp Biochem Physiol 90B:585–591Google Scholar
  22. di Prisco G, D’Avino R, Camardella L, Caruso C, Romano M, Rutigliano B (1990) Structure and function of hemoglobin in antarctic fishes and evolutionary implications. Polar Biol 10:269–274CrossRefGoogle Scholar
  23. Eastman JT (1988) Ocular morphology in antarctic notothenioid fishes. J Morphol 196:283–306CrossRefGoogle Scholar
  24. Everson I, Ralph R (1968) Blood analyses of some antarctic fish. Bull Br Antarct Surv 15:59–62Google Scholar
  25. Giardina B, Amiconi G (1981) Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Methods Enzymol 76:417–427PubMedCrossRefGoogle Scholar
  26. Gillen RG, Riggs A (1972) Structure and function of the hemoglobins from the carp, Cyprinus carpio. J Biol Chem 247:6039–6046PubMedGoogle Scholar
  27. Grigg GC (1967) Some respiratory properties of the blood of four species of antarctic fishes. Comp Biochem Physiol 23:139–148PubMedCrossRefGoogle Scholar
  28. Hemmingsen EA, Douglas EL (1970) Respiratory characteristics of the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol 33:733–744PubMedCrossRefGoogle Scholar
  29. Hemmingsen EA, Douglas EL (1977) Respiratory and circulatory adaptations to the absence of hemoglobin in Chaenichthyid fishes. In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, pp 479–487Google Scholar
  30. Holeton GF (1970) Oxygen uptake and circulation by a hemoglobinless antarctic fish (Chaenocephalus aceratus Lönnberg) compared with three red-blooded antarctic fish. Comp Biochem Physiol 34:457–471PubMedCrossRefGoogle Scholar
  31. Hureau J-C, Petit D, Fine JM, Marneux M (1977) New cytological, biochemical and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, pp 459–477Google Scholar
  32. Kennett JP (1968) Paleo-oceanographic aspects of the foraminiferal zonation in the Upper Miocene-Lower Pliocene of New Zealand. G Geol Ser 2, 35:143–156Google Scholar
  33. Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of antarctic fishes. Adv Mar Biol 24:321–388CrossRefGoogle Scholar
  34. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transition: a plausible model. J Mol Biol 12:88–118PubMedCrossRefGoogle Scholar
  35. Perutz MF (1969) The haemoglobin molecule. Proc R Soc London, Ser B 173:113–140CrossRefGoogle Scholar
  36. Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature (Lond) 299:421–426CrossRefGoogle Scholar
  37. Qvist J, Weber RE, DeVries AL, Zapol WM (1977) pH and hemoglobin oxygen affinity in blood from the antarctic cod Dissostichus mawsoni. J Exp Biol 67:77–88PubMedGoogle Scholar
  38. Raymond JA, DeVries AL (1976) Some respiratory characteristic of the blood of four antarctic fishes. J Exp Zool 196:393–396PubMedCrossRefGoogle Scholar
  39. Riggs A (1970) Properties of fish hemoglobins. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. Academic Press, New York, pp 209–252Google Scholar
  40. Root RW (1931) The respiratory function of blood in marine organisms. Biol Bull Mar Biol Lab, Woods Hole 61:427–456CrossRefGoogle Scholar
  41. Rossi-Fanelli A, Antonini E (1960) Oxygen equilibrium of haemoglobin from Thunnus thynnus. Nature (Lond) 186:895–896CrossRefGoogle Scholar
  42. Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (Lond) 173:848–850CrossRefGoogle Scholar
  43. Tan AL, De Young A, Noble RW (1972) The pH dependence of the affinity, kinetics, and cooperativity of ligand binding to carp hemoglobin, Cyprinus carpio. J Biol Chem 247:2493–2498PubMedGoogle Scholar
  44. Tetens V, Wells RMG, DeVries AL (1984) Antarctic fish blood: respiratory properties and the effects of thermal acclimation. J Exp Biol 109:265–279Google Scholar
  45. Wells RMG (1986) Cutaneous oxygen uptake in the antarctic icequab, Rigophila dearborni (Pisces; Zoarcidae). Polar Biol 5:175–179CrossRefGoogle Scholar
  46. Wells RMG, Jokumsen A (1982) Oxygen binding properties of hemoglobins from antarctic fishes. Comp Biochem Physiol 71B:469–473Google Scholar
  47. Wells RMG, Ashby MD, Duncan SJ, Macdonald JA (1980) Comparative studies of the erythrocytes and haemoglobins in nototheniid fishes from Antarctica. J Fish Biol 17:517–527CrossRefGoogle Scholar
  48. Wells RMG, Macdonald JA, di Prisco G (1990) Thin-blooded antarctic fishes: a rheological comparison of the haemoglobin-free icefishes, Chionodraco kathleenae and Cryodraco antarcticus, with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609CrossRefGoogle Scholar
  49. Wittenberg JB, Wittenberg DK (1974) The choroid rete mirabile. I. Oxygen secretion and structure: comparison with the swim bladder rete mirabile. Biol Bull 145:116–136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • G. di Prisco
    • 1
  • R. D’Avino
    • 1
  • C. Caruso
    • 1
  • M. Tamburini
    • 1
  • L. Camardella
    • 1
  • B. Rutigliano
    • 1
  • V. Carratore
    • 1
  • M. Romano
    • 1
  1. 1.Institute of Protein Biochemistry and EnzymologyC.N.R.NaplesItaly

Personalised recommendations