Skip to main content

Physiological Roles of High Lipid Content in Tissues of Antarctic Fish Species

  • Conference paper

Abstract

Antarctic fish show many adaptations to their stenothermic cold life histories. The majority of antarctic fish produce glycoprotein antifreeze compounds which provide resistance to freezing of their hypoosmotic tissues by the subzero environment (DeVries 1983; DeVries, this Vol.). In many species, hematocrit of the blood is either substantially reduced or red cells and hemoglobin are absent (as in Channichthyidae), conditions which lower viscosity of the blood at severely cold temperature (Hemmingsen and Douglas 1977; Wells this Vol.). Lack of hemoglobin in Channichthyids is compensated for by increased heart size, blood volume and cardiac output (Hemmingsen et al. 1972; Hemmingsen, this Vol.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battino R, Evans FD, Danforth WF (1968) The solubilities of seven gases in olive oil with reference to theories of transport through the cell membrane. J Am Oil Chem Soc 45:830–841

    Article  PubMed  CAS  Google Scholar 

  • Bieber LL, Fiol CJ (1984) Kinetic analysis of multisubstrate carnitine palmitoyltransferase. Curr Top Cell Reg 24:111–117

    CAS  Google Scholar 

  • Bremer J. Osmundsen H (1984) Fatty acid oxidation and its regulation. In: Numa S (ed) New comprehensive biochemistry, vol. 7, Fatty acid metabolism and its regulation. Elsevier, New York, pp 113–154

    Chapter  Google Scholar 

  • Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 43:22–236

    Google Scholar 

  • Crabtree B, Newsholme EA (1972a) The activities of Phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenase in muscles from vertebrates and invertebrates. Biochem J 12:49–58

    Google Scholar 

  • Crabtree B, Newsholme EA (1972b) The activities of lipases and carnitine palmitoyltransferase in muscles from vertebrates and invertebrates. Biochem J 130:697–05

    PubMed  CAS  Google Scholar 

  • Crockett EL, Sidell BD (1990) Some pathways of energy metabolism are cold adapted in antarctic fishes. Physiol Zool 63:472–488

    Google Scholar 

  • DeVries AL (1983) Biological antifreeze agents. Annu Rev Physiol 45:245–260

    Article  PubMed  CAS  Google Scholar 

  • Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 1982:385–393

    Article  Google Scholar 

  • Egginton S, Sidell BD (1989) Thermal acclimation induces adaptive changes in subcellular structure of fish skeletal muscle. Am J Physiol 256:R1–R9

    PubMed  CAS  Google Scholar 

  • Fischkoff S, Vanderkooi J (1975) Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol 65:663–674

    Article  PubMed  CAS  Google Scholar 

  • Fitch NA, Johnston IA, Wood RE (1984) Skeletal muscle capillary supply in a fish that lacks respiratory pigments. Respir Physiol 57:20–213

    Article  Google Scholar 

  • Hemmingsen EA, Douglas EL (1977) Respiratory and circulatory adaptations to the absence of hemoglobin in chaenichthyid fishes. In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, pp 479–487

    Google Scholar 

  • Hemmingsen EA, Douglas EL, Johansen K, Millard RW (1972) Aortic blood flow and cardiac output in the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol 43A:1045–1051

    Article  Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artefact? Physiol Zool 47:137–152

    Google Scholar 

  • Jezierska B, Hazel JR, Gerking SD (1982) Lipid mobilization during starvation in the rainbow trout, Salmo gairdneri. J Fish Biol 21:681–692

    Article  CAS  Google Scholar 

  • Johnston IA, Camm JP (1987) Muscle structure and differentiation in pelalgic and demersal stages of the antarctic teleost Notothenia neglecta. Mar Biol 94:183–190

    Article  Google Scholar 

  • Lin Y, Dobbs GH, DeVries AL (1974) Oxygen consumption and lipid content in red and white muscles of antarctic fishes. J Exp Zool 189:379–386

    Article  PubMed  CAS  Google Scholar 

  • Londraville RL, Sidell BD (1990) Ultrastructure of aerobic muscle in antarctic fishes may contribute to maintenance of diffusive fluxes. J Exp Biol 150:205–220

    Google Scholar 

  • Lund EL, Sidell BD (1991) Neutral lipid compositions of antarctic fish tissues may reflect use of fatty acyl substrates by catabolic systems. Mar Biol (in press)

    Google Scholar 

  • Murthy MSR, Pande SV (1987) Malonyl CoA binding site and overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA 84:378–382

    Article  PubMed  CAS  Google Scholar 

  • Ralph R, Everson I (1968) Respiration of antarctic fish. Comp Biochem Physiol 27:299–307

    Article  Google Scholar 

  • Scholander PF, Flagg W, Irving L (1953) Climatic adaptation in arctic and tropical poikilotherms. Physiol Zool 26:67–92

    Google Scholar 

  • Sidell BD (1988) Diffusion and ultrastructural adaptive responses in ectotherms. In: Jones DP (ed) Microcompartmentation. CRC Press, Boca Raton, pp 71–92

    Google Scholar 

  • Sidell BD, Driedzic WR (1985) Relationship or cardiac energy metabolism and cardiac work demand in fishes. In: Gilles R (ed) Circulation, respiration and metabolism. Springer, Berlin, Heidelberg, New York Tokyo, pp 103–120

    Google Scholar 

  • Sidell BD, Hazel JR (1987) Temperature affects the diffusion of small molecules through cytosol of fish muscle. J Exp Biol 129:19–203

    Google Scholar 

  • Sidell BD, Crockett EL, Driedzic WR (1988) Metabolic characteristics of muscle tissues from antarctic fishes. Antarc J US 23:138–140

    Google Scholar 

  • Sidell BD, Crockett EL, Driedzic WR (in preparation) Monoenoic fatty acids are the preferred substrates for energy metabolism of antarctic fishes

    Google Scholar 

  • Subczynski WK, Hyde JS (1984) Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys J 45:743–748

    Article  PubMed  CAS  Google Scholar 

  • Takima L, Love RM, Smith GL (1985) Selectivity in mobilization of stored fatty acids by maturing cod, Gadus morhua L. Comp Biochem Physiol 80B:713–718

    Google Scholar 

  • Windrem DA, Plachy WZ (1980) The diffusion-solubility of oxygen in lipid bilayers. Biochim Biophys Acta 600:655–662

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlag DE (1960) Metabolism of an antarctic fish and the phenomenon of cold adaptation. Ecology 38:502–510

    Article  Google Scholar 

  • Wohlschlag DE (1964) Respiratory metabolism and ecological characteristics of some fishes in McMurdo Sound, Antarctica. In: Wells HW (ed) Biology of the antarctic seas. Antarctic res ser, vol 1. Am Geophys Union, Washington, DC, pp 33–62

    Chapter  Google Scholar 

  • Zammit VA, Newsholme EA (1979) Activities of enzymes of fat and ketone body metabolism in teleost and elasmobranch fish. Biochem J 184:313–322

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sidell, B.D. (1991). Physiological Roles of High Lipid Content in Tissues of Antarctic Fish Species. In: di Prisco, G., Maresca, B., Tota, B. (eds) Biology of Antarctic Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76217-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76217-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76219-2

  • Online ISBN: 978-3-642-76217-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics