Advertisement

Cognitive Utilization of Cerebral Vasomotor Reserve in Cerebrovascular Disease

  • H. L. Lagrèze
  • A. Hartmann
  • A. Schaub
Conference paper

Abstract

Regional cerebral blood flow (rCBF) is normally coupled to neuronal function. Increased neuronal activity needs enhanced rCBF to meet metabolic demands. Given the decreased dilatory capacity of the cerebral vessels in occlusive vascular disease [16], we studied the adapatation of flow to function in stroke patients. Specifically, we asked whether the cognitive dysfunction of stroke victims can be explained by impaired adaptability of rCBF to mental activity.

Keywords

Stroke Patient Exploratory Factor Analysis Regional Cerebral Blood Flow Cortex Area Inferior Temporal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cattell RB (1978) The scientific use of factor analysis, Plenum, New YorkGoogle Scholar
  2. 2.
    Creutzfeld OD (1983) Cortex cerebri. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  3. 3.
    Ewing JR, Brown GC, Gdowski JW, Simkins R, Levine SR, Welch KMA (1989) Stroke risk and age do not predict behavioral activation of brain blood flow. Ann Neurol 25:571–576PubMedCrossRefGoogle Scholar
  4. 4.
    Fuster JM (1989) The prefrontal cortex, anatomy, physiology and neuropsychology of the frontal lobe. Raven, New YorkGoogle Scholar
  5. 5.
    Hyvärinen J (1982) The parietal cortex of monkey and man, Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  6. 6.
    Phelps ME, Kuhl DE, Mazziotta J (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in humans Science 211:1445–1448PubMedCrossRefGoogle Scholar
  7. 7.
    Posner MI, Walker JA, Friedrich J, Rafal RD (1984) Effects of parietal lobe injury on covert orienting of visual attention. J Neurosci 4:1863–1874PubMedGoogle Scholar
  8. 8.
    Raven JC, Court JH, Raven J (1979) Manual for Raven’s Progressive Matrices and vocabulary scales. HK Lewis, LondonGoogle Scholar
  9. 9.
    Risberg I, Ali Z, Wilson EM, Wills EL, Halsey JH (1975) Regional cerebral blood flow by xenon-133 inhalation. Stroke 6:142–128PubMedCrossRefGoogle Scholar
  10. 10.
    Risberg J, Maximilian AV, Prohovnik I (1977) Changes of cortical activity pattern during habituation to a reasoning test. Neuropsychologia 15:793–798PubMedCrossRefGoogle Scholar
  11. 11.
    Roland PE (1984) Organisation of motor control by the normal human brain. Human Neurobiol 2:205–216Google Scholar
  12. 12.
    Shallice T, Evans ME (1978) The involvement of the frontal lobes in cognitive estimation. Cortex 14:294–302PubMedGoogle Scholar
  13. 13.
    Tsuda Y, Hartmann A (1989) Changes in hyperfrontality of cerebral blood flow and carbon dioxide reactivity with age. Stroke 20:1667–1673PubMedCrossRefGoogle Scholar
  14. 14.
    Ungerleider JL, Mishkin (1982) Two cortical visual systems. In: Ingle DJ, Mansfield RJ, Goodale MA (eds) The analysis of visual behavior. MIT Press, CambridgeGoogle Scholar
  15. 15.
    Van Essen DC (1985) Functional organisation of primate visual cortex. In: Peters A, Jones G (eds) Cerebral cortex, vol 3. Plenum, New YorkGoogle Scholar
  16. 16.
    Yamamoto M, Meyer JS, Sakai F, Yamaguchi F (1980) Aging and cerebral vasodilator response to hypercarbia. Arch Neurol 37:489–496PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • H. L. Lagrèze
    • 1
  • A. Hartmann
    • 1
  • A. Schaub
    • 2
  1. 1.Department of NeurologyUniversity of BonnBonn 1Germany
  2. 2.Department of PsychiatryUniversity of BonnBonn 1Germany

Personalised recommendations