Advertisement

Mechanisms of Glial Swelling from Lactacidosis and High K+ Levels in the Extracellular Compartment

  • F. Staub
  • O. Kempski
  • J. Peters
  • H. Weigt
  • F. v. Rosen
  • A. Baethmann
Conference paper

Abstract

An important manifestation of ischemic brain edema is swelling of glial cells and dendrites, i.e., cytotoxic brain edema [1,10].The underlying mechanisms resulting in ischemic brain edema are far from understood. This may be attributable to the fact that in ischemia a multitude of processes becomes simultaneously activated in a particularly complex tissue. Therefore, assessment of molecular mechanisms underlying ischemic cell swelling and cell damage is rather difficult. Acidosis and accumulation of K+ ions in the extracellular compartment are regularly observed in cerebral ischemia. These factors may lead to cytotoxic brain edema and, eventually, damage to astrocytes and neurons. It has been shown that in cerebral ischemia the extracellular pH can fall to pH 6.0 and below, and that lactic acid accumulates to a level of 20–30 μmol/g [11,16]. Simultaneously, interstitial potassium concentrations in cerebral cortex may rise to 80 mM [16].

Keywords

Lactic Acid Glial Cell Cell Volume Cerebral Ischemia Brain Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baethmann A (1978) Pathophysiological and pathochemical aspects of cerebral edema. Neurosurg Rev 1:85–100CrossRefGoogle Scholar
  2. 2.
    Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371PubMedCrossRefGoogle Scholar
  3. 3.
    Boron WF (1983) Transport of H+ and of ionic weak acids and bases. J Membrane Biol 72:1–16CrossRefGoogle Scholar
  4. 4.
    Frangakis MV, Kimeiberg HK (1984) Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures. Neurochem Res 9:1689–1698PubMedCrossRefGoogle Scholar
  5. 5.
    Kachel V, Glossner E, Kordwig G, Ruhenstroth-Bauer G (1977) Fluvo-Metricell, a combined cell volume and cell fluorescence analyzer. J Histochem Cytochem 25:804–812PubMedCrossRefGoogle Scholar
  6. 6.
    Kachel V (1986) Interactive multi-window integration of two-parameter flow cytometric data fields. Cytometry 7:89–92PubMedCrossRefGoogle Scholar
  7. 7.
    Kempski O, Chaussy L, Groß U, Zimmer M, Baethmann A (1983) Volume regulation and metabolism of suspended C6 glioma cells: an in vitro model to study cytotoxic brain edema. Brain Res 279:217–228PubMedCrossRefGoogle Scholar
  8. 8.
    Kempski O, Staub F, Jansen M, Schödel F, Baethmann A (1988a) Glial swelling during extracellular acidosis in vitro. Stroke 19:385–392PubMedCrossRefGoogle Scholar
  9. 9.
    Kempski O, Staub F, v Rosen F, Zimmer M, Neu A, Baethmann A (1988b) Molecular mechanisms of glial swelling in vitro. Neurochem Pathol 9:109–125PubMedGoogle Scholar
  10. 10.
    Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropath Exp Neurol 26:1–14PubMedCrossRefGoogle Scholar
  11. 11.
    Kraig RP, Pulsinelli WA, Plum F (1985) Heterogeneous distribution of hydrogen and bicarbonate ions during complete brain ischemia. In: Kogure K, Hossmann KA, Siesjö BK, Welch FA (eds) Progress in brain research, vol 63. Elsevier, Amsterdam, pp 155–166Google Scholar
  12. 12.
    Kraig RP, Petito CK, Plum F, Pulsinelli WA (1987) Hydrogen ions kill brain at concentrations reached in ischemia. J Cereb Blood Flow Metab 7:379–386PubMedCrossRefGoogle Scholar
  13. 13.
    Norenberg MD, Mozes LW, Gregorios JB, Norenberg L-OB (1987) Effects of lactic acid on astrocytes in primary culture. J Neuropathol Exp Neurol 46:154–166PubMedCrossRefGoogle Scholar
  14. 14.
    Pfeiffer SE, Betschart B, Cook J, Mancini P, Morris R (1977) Glial cell lines. In: Fedoroff S, Hertz L (eds) Cell, tissue, and organ cultures in neurobiology. Academic, New York, pp 287–346Google Scholar
  15. 15.
    Rothe G, Valet G (1988) Phagocytosis, intracellular pH, and cell volume in the multifunctional analysis of granulocytes by flow cytometry. Cytometry 9:316–324PubMedCrossRefGoogle Scholar
  16. 16.
    Siemkowicz E, Hansen AJ (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke 12:236–240PubMedCrossRefGoogle Scholar
  17. 17.
    Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metabol 4:301–304CrossRefGoogle Scholar
  18. 18.
    Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • F. Staub
    • 1
  • O. Kempski
    • 1
  • J. Peters
    • 1
  • H. Weigt
    • 1
  • F. v. Rosen
    • 1
  • A. Baethmann
    • 1
  1. 1.Institute for Surgical Research, Klinikum GroßhadernLudwig-Maximilians-UniversityMünchen 70Germany

Personalised recommendations