Energy Metabolism in Cortex and Hippocampus During Aging, Ischemia, and Dementia

  • S. Hoyer
Conference paper


With respect to oxidative brain metabolism, the mature, healthy, nonstarved mammalian brain uses glucose only as a source of energy in the form of ATP to meet its functional and structural requirements, such as neurotransmission, synaptic function, cellular calcium homeostasis, axoplasmatic flux, and cellular integrity [14,17,30,36,42,51,85,121,122,137]. Thus, glucose metabolism in the brain plays a pivotal role in maintaining cellular homeostasis. Perturbations in this metabolic pathway may, therefore, generate cellular dysfunction leading to neuropsychiatric deficits.


Cerebral Ischemia Glucose Utilization Brain Cortex Cereb Blood Flow Cerebral Glucose Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen K, Busza AL, Crockard A, Frackowiak RSJ, Gadian DG, Proctor E, Ross Russell RW, Williams SR (1988) Acute cerebral ischemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. III. Changes following ischaemia. J Cereb Blood Flow Metab 8:816–821PubMedCrossRefGoogle Scholar
  2. 2.
    Arai H, Passonneau JV, Lust WD (1986) Energy metabolism in delayed neuronal death of CA1 neurons of the hippocampus following transient ischemia in the gerbil. Metabol Brain Dis 1:263–278CrossRefGoogle Scholar
  3. 3.
    Bachelard HS (1971) Specific and kinetic properties of monosaccharide uptake into guina pig cerebral cortex in vitro. J Neurochem 13:213–222CrossRefGoogle Scholar
  4. 4.
    Barkulis SS, Geiger A, Kawikata Y, Aguilar V (1960) A study of the incorporation of 14C derived from glucose into free amino acids of the brain cortex. J Neurochem 5:339–348PubMedCrossRefGoogle Scholar
  5. 5.
    Baudry M, Fuchs J, Kessler M, Arst D, Lynch G (1982) Entorhinal cortex lesions induce a decreased calcium transport in hippocampal mitochondria. Science 216:411–413PubMedCrossRefGoogle Scholar
  6. 6.
    Benjamin AM, Quastel JH (1975) metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function. J Neurochem 25:197–206PubMedCrossRefGoogle Scholar
  7. 7.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  8. 8.
    Benveniste H, Jørgensen B, Diemer NH, Hansen AJ (1988) Calcium accumulation is by glutamate receptor activation involved in hippocampal cell damage after ischemia. Acta Neurol Scand 78:529–536PubMedCrossRefGoogle Scholar
  9. 9.
    Benzi G, Arrigoni E, Dagani F, Marzatico F, Curti D, Polgatti M, Villa RF (1980) Aging and brain enzymes. In: Barbagallo-Sangiorgi G, Exton-Smith AN (eds) The aging brain. Neurological and mental disturbances. Plenum, New York, pp 1–13Google Scholar
  10. 10.
    Bereczki D, Csiba L, Németh G (1988) The vulnerability of gerbils to focal cerebral ischemia. Neurological signs and regional biochemical changes after ischemia and recirculation. Eur Arch Psychiatr Neurol Sci 238:11–18CrossRefGoogle Scholar
  11. 11.
    Bowen DM, Smith CB, White P, Flack RHA, Carrasco LH, Gedye JL, Davison AN (1977) Chemical pathology of the organic dementias. II. Quantitative estimation of cellular changes in postmortem brain. Brain 100:427–453PubMedCrossRefGoogle Scholar
  12. 12.
    Browning M, Baudry M, Bennett WF, Lynch G (1981) Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria. J Neurochem 36:1932–1940PubMedCrossRefGoogle Scholar
  13. 13.
    Choki J, Greenberg J, Reivich M (1983) Regional cerebral glucose metabolism during and after bilateral cerebral ischemia in the gerbil. Stroke 14:568–574PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189PubMedGoogle Scholar
  15. 15.
    Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of Ca2+ induced by excitatory aminoacids in CA1 hippocampal neurons. Science 240:649–653PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper AJL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519PubMedGoogle Scholar
  17. 17.
    Dastur DK (1985) Cerebral blood flow and metabolism in normal human aging, pathological aging, and senile dementia. J Cereb Blood Flow Metab 5:1–9PubMedCrossRefGoogle Scholar
  18. 18.
    Davies KJA, Goldberg AL (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J Biol Chem 262:8220–8226PubMedGoogle Scholar
  19. 19.
    Davies P (1979) Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171:319–327PubMedCrossRefGoogle Scholar
  20. 20.
    Davies SW, McBean GJ, Roberts PJ (1984) A glutamatergic innervation of the nucleus basalis/substantia innominata. Neurosci Lett 45:105–110PubMedCrossRefGoogle Scholar
  21. 21.
    Dekoning-Verest IF (1980) Glutamate metabolism in ageing rat brain. Mech Ageing Dev 13:83–92CrossRefGoogle Scholar
  22. 22.
    Denton RM, McCormack JG, Thomas AP (1986) Hormonal regulation of intramitochondrial metabolism. Biol Chem Hoppe-Seyler 367 [Suppl]:64Google Scholar
  23. 23.
    Deshmukh DR, Owen OE, Patel MS (1980) Effect of aging on the metabolism of pyruvate and 3-hydroxybutyrate in nonsynaptic and synaptic mitochondria from rat brain. J Neurochem 34:1219–1224PubMedCrossRefGoogle Scholar
  24. 24.
    Deshpande JK, Siesjö BK, Wieloch T (1987) Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7:89–95PubMedCrossRefGoogle Scholar
  25. 25.
    Dienel GA, Cruz NF (1984) Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal, or chemical injury. J Neurochem 42:1053–1061PubMedCrossRefGoogle Scholar
  26. 26.
    Dienel GA, Cruz NF, Rosenfeld SJ (1985) Temporal profiles of proteins responsive to transient ischemia. J Neurochem 44:600–610PubMedCrossRefGoogle Scholar
  27. 27.
    Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 6:505–510PubMedCrossRefGoogle Scholar
  28. 28.
    Drejer J, Honoré T, Schousboe A (1987) Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J Neurosci 7:2910–2916PubMedGoogle Scholar
  29. 29.
    Dyrks T, Weidemann A, Multhaup G, Salbaum JM, Lemaire HG, Kang J, Müller-Hill B, Masters CL, Beyreuther K (1988) Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J 7:949–957PubMedGoogle Scholar
  30. 30.
    Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19PubMedCrossRefGoogle Scholar
  31. 31.
    Farooqui AA, Liss L, Horrocks LA (1988) Neurochemical aspects of Alzheimer’s disease: Involvement of membrane phospholipids. Metabol Brain Dis 3:19–35CrossRefGoogle Scholar
  32. 32.
    Folbergrova J, Ljunggren B, Norberg K, Siesjö BK (1974) Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res 80:265–279PubMedCrossRefGoogle Scholar
  33. 33.
    Garland PB, Randle PJ (1964) Control of pyruvate dehydrogenase in the perfused rat heart by the intracellular concentration of acetyl-coenzyme A. Biochem J 91:6cGoogle Scholar
  34. 34.
    Garland PB, Newsholme EA, Randle PJ (1964) Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation, on pyruvate metabolism and on lactate/-pyruvate and L-glycerol 3-phosphate/ dihydroxyacetone phosphate concentration ratios in the heart and rat diaphragm muscles. Biochem J 93:665–678PubMedGoogle Scholar
  35. 35.
    Geiger A, Kawikata Y, Barkulis SS (1960) Major pathways of glucose utilization in the brain in brain perfusion experiments in vivo and in situ. J Neurochem 5:323–338PubMedCrossRefGoogle Scholar
  36. 36.
    Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood. Arterial-venous differences in man. J Biol Chem 144:325–332Google Scholar
  37. 37.
    Gibson GE, Peterson C (1981) Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J Neurochem 37:978–984PubMedCrossRefGoogle Scholar
  38. 38.
    Gibson GE, Manger T, Toral-Barza L, Freeman G (1989) Cytosolic-free calcium and neurotransmitter release with decreased availability of glucose or oxygen. Neurochem Res 14:437–443PubMedCrossRefGoogle Scholar
  39. 39.
    Ginsberg MD, Graham DI, Busto R (1985) Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 18:470–481PubMedCrossRefGoogle Scholar
  40. 40.
    Goldberg ND, Passonneau JV, Lowry OH (1966) Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J Biol Chem 241:3997–4003PubMedGoogle Scholar
  41. 41.
    Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gaydusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235:877–880PubMedCrossRefGoogle Scholar
  42. 42.
    Gottstein U, Bernsmeier A, Sedlmeyer I (1963) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin Wochenschr 41:943–948PubMedCrossRefGoogle Scholar
  43. 43.
    Hagberg H, Lehmann A, Sandberg M, Nyström B, Jacobsen I, Hamberger A (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5:413–419PubMedCrossRefGoogle Scholar
  44. 44.
    Hansford RG, Castro F (1985) Role of Ca2+ in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes. Biochem J 227:129–136PubMedGoogle Scholar
  45. 45.
    Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128PubMedCrossRefGoogle Scholar
  46. 46.
    Hauw JJ, Duyckaerts C, Delaère P (1988) Neuropathology of aging and DAT: how can age-related changes be distinguished from those due to disease processes. In: Henderson AS, Henderson JH (eds) Etiology of dementia of Alzheimer’s type. Wiley, Chichester, pp 195–211Google Scholar
  47. 47.
    Hertz MM, Paulson OB, Barry DI, Christiansen JS, Svendsen PA (1981) Insulin increases glucose transfer across the blood-brain barrier. J Clin Invest 67:597–604PubMedCrossRefGoogle Scholar
  48. 48.
    Hillered L, Siesjö BK, Arfors EK (1984) Mitochondrial response to transient forebrain ischemia and recirculation in the rat. J Cereb Blood Flow Metab 4:438–446PubMedCrossRefGoogle Scholar
  49. 49.
    Hochachka PW, Mustafa T (1972) Invertebrate facultative anaerobiosis. Science 178: 1056–1060PubMedCrossRefGoogle Scholar
  50. 50.
    Hoffman WE, Pelligrino D, Miletich DJ, Albrecht RF (1985) Brain metabolic changes in young vs aged rats during hypoxia. Stroke 16:860–863PubMedCrossRefGoogle Scholar
  51. 51.
    Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48:1239–1243PubMedCrossRefGoogle Scholar
  52. 52.
    Hoyer S (1985) The effect of age on glucose and energy metabolism in brain cortex of rats. Arch Gerontol Geriatr 4:193–203PubMedCrossRefGoogle Scholar
  53. 53.
    Hoyer S (1986) Senile dementia and Alzheimer’s disease. Brain blood flow and metabolism. Prog Neuropsychopharmacol Biol Psychiatry 10:447–478PubMedCrossRefGoogle Scholar
  54. 54.
    Hoyer S (1988) Metabolism and circulation in normal and abnormal aging processes of the brain: What are the mechanisms of neuronal degeneration? In: Henderson AS, Henderson JH (eds) Etiology of dementia of Alzheimer’s type. Wiley, Chichester, pp 149–162Google Scholar
  55. 55.
    Hoyer S (1988) Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significance. Age 11:158–166CrossRefGoogle Scholar
  56. 56.
    Hoyer S, Betz K (1988) Abnormalities in glucose and energy metabolism are more severe in the hippocampus than in cerebral cortex in postischemic recovery in aged rats. Neurosci Lett 94:167–172PubMedCrossRefGoogle Scholar
  57. 57.
    Hoyer S, Krier C (1986) Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging 7:23–29PubMedCrossRefGoogle Scholar
  58. 58.
    Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75:227–232PubMedCrossRefGoogle Scholar
  59. 59.
    Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-on-set dementia of Alzheimer type? J Neurol 235:143–148PubMedCrossRefGoogle Scholar
  60. 60.
    Hoyer S, Nitsch R, Oesterreich K (1990) Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type. Neurosci Lett 117:358–362PubMedCrossRefGoogle Scholar
  61. 61.
    Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm (PD-Sect) (in press)Google Scholar
  62. 62.
    Iida S, Potter JD (1986) Calcium binding to calmodulin. Cooperativity of calciumbinding sites. J Biochem 99:1765–1772PubMedGoogle Scholar
  63. 63.
    Iwangoff P, Armbruster R, Enz A, Meier-Ruge W, Sandoz P (1980) Glycolytic enzymes from human autoptic brain cortex: Normally aged and demented cases. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester, pp 258–262Google Scholar
  64. 64.
    Jope R, Blass JP (1976) The regulation of pyruvate dehydrogenase in brain in vivo. J Neurochem 26:709–714PubMedCrossRefGoogle Scholar
  65. 65.
    Kahn CR (1985) The molecular mechanism of insulin action. Ann Rev Med 36: 429–451PubMedCrossRefGoogle Scholar
  66. 66.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736PubMedCrossRefGoogle Scholar
  67. 67.
    Khachaturian ZS (1990) The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging 1:17–34Google Scholar
  68. 68.
    Kraig RP, Petito CK, Plum F, Pulsinelli WA (1987) Hydrogen ions kill brain at concentrations reached in ischemia. J Cereb Blood Flow Metab 7:379–386PubMedCrossRefGoogle Scholar
  69. 69.
    Kyriakis JM, Hausmann RE, Peterson SW (1987) Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons. Proc Natl Acad Sci USA 84:7463–7467PubMedCrossRefGoogle Scholar
  70. 70.
    La Noue K, Nicklas WJ, Williamson JR (1970) Control of citric acid cycle activity in rat heart mitochondria. J Biol Chem 245:102–111Google Scholar
  71. 71.
    Leenders HJ, Berendes HD, Helmsing PJ, Derksen J, Koninkx JFJG (1974) Nuclearmitochondrial interactions in the control of mitochondrial respiratory metabolism. Subcell Biochem 3:119–147Google Scholar
  72. 72.
    Leibovitz BE, Siegel BV (1980) Aspects of free radical reactions in biological systems. Aging. J Gerontol 35:45–56PubMedGoogle Scholar
  73. 73.
    Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enyzmes associated with glucose utilization. Biochem J 218:131–138PubMedGoogle Scholar
  74. 74.
    Leong SF, Lim JCK, Clark JB (1981) Enery-metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556PubMedCrossRefGoogle Scholar
  75. 75.
    Levine SR, Welch KMA, Helpern JA, Chopp M, Bruce R, Selwa J, Smith MB (1988) Prolonged deterioration of ischemic brain energy metabolism and acidosis associated with hyperglycemia: Human cerebral infarction studied by serial 31P-NMR spectroscopy. Ann Neurol 23:416–418PubMedCrossRefGoogle Scholar
  76. 76.
    Ljunggren B, Norberg K, Siesjö BK (1974) Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173–186PubMedCrossRefGoogle Scholar
  77. 77.
    Ljunggren B, Ratcheson RA, Siesjö BK (1974) Cerebral metabolic state following complete compression ischemia. Brain Res 73:291–307PubMedCrossRefGoogle Scholar
  78. 78.
    Ljunggren B, Schutz H, Siesjö BK (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res 73:277–289PubMedCrossRefGoogle Scholar
  79. 79.
    Liguri G, Taddai N, Nassi P, Latorraca S, Nediani C, Sorbi S (1990) Changes in Na+, K+-ATPase, Ca2+-ATPase and some soluble enzymes related to energy metabolism in brain of patients with Alzheimer’s disease. Neurosci Lett 112:338–342PubMedCrossRefGoogle Scholar
  80. 80.
    Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191PubMedCrossRefGoogle Scholar
  81. 81.
    Linn F, Paschen W, Grosse Ophoff B, Hossmann KA (1987) Mitochondrial respiration during recirculation after prolonged ischemia in cat brain. Exp Neurol 96:321–333PubMedCrossRefGoogle Scholar
  82. 82.
    Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241PubMedCrossRefGoogle Scholar
  83. 83.
    Linn TC, Pettit FH, Hucho F, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complex from kidney, heart and liver mitochondria. Proc Natl Acad Sci USA 64: 227–234PubMedCrossRefGoogle Scholar
  84. 84.
    Lippa AS, Critchett DJ, Ehlert F, Yamamura HI, Enna SJ, Bartus RT (1981) Agerelated alterations in neurotransmitter receptors: An electrophysiological and biochemical analysis. Neurobiol Aging 2:3–8PubMedCrossRefGoogle Scholar
  85. 85.
    Lipton P, Whittingham TS (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus. J Physiol 325:51–65PubMedGoogle Scholar
  86. 86.
    London ED, Nespor SM, Ohata M, Rapoport SI (1981) Local cerebral glucose utilization during development and aging in the Fischer-344 rat. J Neurochem 37: 217–221PubMedCrossRefGoogle Scholar
  87. 87.
    Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30PubMedGoogle Scholar
  88. 88.
    MacMillan V, Shankaran R (1984) Influence of lactate accumulation on Na+, K+-ATPase activity of ischemic and postischemic brain. Brain Res 303:125–132PubMedCrossRefGoogle Scholar
  89. 89.
    Malthe-Sørensen D, Skrede K, Fonnum F (1980) Calcium dependent release of D-3H-aspartate from the dorsal septum after electrical stimulation of the fimbria in vitro. Neuroscience 5:127–133CrossRefGoogle Scholar
  90. 90.
    Masters CL, Simms G, Weinmann NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci 82:4245–4249PubMedCrossRefGoogle Scholar
  91. 91.
    Mattson MP (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 2:105–117CrossRefGoogle Scholar
  92. 92.
    McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163PubMedCrossRefGoogle Scholar
  93. 93.
    Meier-Ruge W, Hunziker O, Iwangoff P, Reichlmeier L, Schultz U (1980) Effect of age on morphological and biochemical parameters of the human brain. In: Stein DC (ed) The psychobiology of aging: problems and perspectives. Elsevier, Amsterdam, pp 297–317Google Scholar
  94. 94.
    Monyer H, Choi DW (1990) Glucose deprivation neuronal injury in vitro is modified by withdrawal of extracellular glutamine. J Cereb Blood Flow Metab 10:337–342PubMedCrossRefGoogle Scholar
  95. 95.
    Monyer H, Goldberg MP, Choi DW (1989) Glucose deprivation neuronal injury in cortical culture. Brain Res 483:347–354PubMedCrossRefGoogle Scholar
  96. 96.
    Mrsulja BB, Mrsulja BJ, Ito U, Walker JT, Spatz M, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. II. Changes in carbohydrates. Acta Neuropathol (Bed) 33:91–103CrossRefGoogle Scholar
  97. 97.
    Mrsulja BB, Lust WD, Mrsulja BJ, Passonneau JV, Klatzo I (1976) Post-ischemic changes in certain metabolites following prolonged ischemia in the gerbil cerebral cortex. J Neurochem 26:1099–1103CrossRefGoogle Scholar
  98. 98.
    Mrsulja BB, Ueki Y, Lust WD (1986) Regional metabolite profiles in early stages of global ischemia in the gerbil. Metabol Brain Dis 1:205–220CrossRefGoogle Scholar
  99. 99.
    Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Watari H (1984) In vivo measurement of energy metabolism and the concomitant monitoring of electroencephalogram in experimental cerebral ischemia. Brain Res 296:370–372PubMedCrossRefGoogle Scholar
  100. 100.
    Nemoto EM, Hossmann KA, Cooper HK (1981) Postischemic hypermetabolism in cat brain. Stroke 12:666–676PubMedCrossRefGoogle Scholar
  101. 101.
    Newsholme EA, Start C (1973) Regulation in metabolism. Wiley, Chichester, pp 88–145Google Scholar
  102. 102.
    Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212PubMedCrossRefGoogle Scholar
  103. 103.
    Patel MS (1977) Age-dependent changes in the oxidative metabolism in rat brain. J Gerontol 32:643–646PubMedGoogle Scholar
  104. 104.
    Pedata F, Slavikova J, Kotas A, Pepeu G (1983) Acetylcholine release from rat cortical slices during postnatal development and aging. Neurobiol Aging 4:31–35PubMedCrossRefGoogle Scholar
  105. 105.
    Peng MT, Peng YI, Chen FN (1977) Age-dependent changes in the oxygen consumption of the cerebral cortex, hypothalamus, hippocampus and amygdaloid in rats. J Gerontol 32:517–522PubMedGoogle Scholar
  106. 106.
    Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18:105–110PubMedCrossRefGoogle Scholar
  107. 107.
    Pettigrew LC, Grotta JC, Rhoades HM, Reid C, McCandless DW (1988) Regional depletion of adenosine triphosphate, phosphocreatine, and glucose in ischemic hippocampus. Metabol Brain Dis 3:185–199CrossRefGoogle Scholar
  108. 108.
    Procter AW, Palmer AM, Francis PT, Low SL, Neary D, Murphey E, Doshi R, Bowen DM (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50:790–802PubMedCrossRefGoogle Scholar
  109. 109.
    Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40:1500–1503PubMedCrossRefGoogle Scholar
  110. 110.
    Rehncrona S, Rosén I, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1:297–311PubMedCrossRefGoogle Scholar
  111. 111.
    Rehncrona S, Hauge HN, Siesjö BK (1989) Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: difference in effect by lactic acid and CO2. J Cereb Blood Flow Metab 9:65–70PubMedCrossRefGoogle Scholar
  112. 112.
    Roth M (1986) The association of clinical and neurological findings and its bearing on the classification and aetiology of Alzheimer’s disease. Br Med Bull 42:42–50PubMedGoogle Scholar
  113. 113.
    Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891PubMedGoogle Scholar
  114. 114.
    Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann Neurol 19:105–111PubMedCrossRefGoogle Scholar
  115. 115.
    Sacks W (1957) Cerebral metabolism of isotopic glucose in normal human subjects. J Appl Physiol 10:37–44PubMedGoogle Scholar
  116. 116.
    Sacks W (1965) Cerebral metabolism of doubly labeled glucose in humans in vivo. J Appl Physiol 20:117–130PubMedGoogle Scholar
  117. 117.
    Sako K, Kobatake K, Yamamoto YL, Diksic M (1985) Correlation of local cerebral blood flow, glucose utilization, and tissue pH following a middle cerebral artery occlusion in the rat. Stroke 16:828–834PubMedCrossRefGoogle Scholar
  118. 118.
    Salbaum JM, Waidemann A, Lemaire HG, Masters CL, Beyreuther K (1988) The promoter of Alzheimer’s disease amyloid A4 precursor gene. EMBO J 7:2807–2813PubMedGoogle Scholar
  119. 119.
    Saz HJ (1971) Facultative anaerobiosis in the invertebrates: pathways and control systems. Am Zoologist 11:125–135Google Scholar
  120. 120.
    Scarpa M, Rigo A, Viglino P, Stevanato R, Bracco F, Battistin L (1987) Age dependence of the level of the enzymes involved in the protection against active oxygen species in the rat brain. Proc Soc Exp Biol Med 185:129–133PubMedGoogle Scholar
  121. 121.
    Siesjö BK (1978) Brain Energy Metabolism. Wiley, Chichester, pp 1–28, pp 151–209Google Scholar
  122. 122.
    Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedCrossRefGoogle Scholar
  123. 123.
    Siesjö BK, Wieloch T (1985) Cerebral metabolism in ischemia: neurochemical basis for therapy. Br J Anaesth 57:47–62PubMedCrossRefGoogle Scholar
  124. 124.
    Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from (U-14C) glucose in vitro in human neocortex. J Neurochem 41:1329–1334PubMedCrossRefGoogle Scholar
  125. 125.
    Smith CB, Goochee C, Rapoport I, Sokoloff L (1980) Effects of ageing on local rates of cerebral glucose utilization in the rat. Brain 103:351–365PubMedCrossRefGoogle Scholar
  126. 126.
    Smith CCT, Bowen DM, Davison AN (1983) The evoked release of endogenous amino acids from tissue prisms of human neocortex. Brain Res 269:103–109PubMedCrossRefGoogle Scholar
  127. 127.
    Stelzer A, Wong RKS (1989) GABAA-responses in hippocampal neurons are potentiated by glutamate. Nature 337:170–173PubMedCrossRefGoogle Scholar
  128. 128.
    Strange PG (1988) The structure and mechanisms of neurotransmitter receptors. Implications for the structure and function of the central nervous system. Biochem J 249:309–318PubMedGoogle Scholar
  129. 129.
    Sylvia AL, Rosenthal M (1978) The effect of age and lung pathology on cytochrome a, a3 redox levels in rat cerebral cortex. Brain Res 146:109–112PubMedCrossRefGoogle Scholar
  130. 130.
    Takei J, Fredericks WR, London ED, Rapoport SI (1983) Cerebral blood flow and oxidative metabolism in conscious Fischer-344 rats of different ages. J Neurochem 40:801–805PubMedCrossRefGoogle Scholar
  131. 131.
    Tanaka K, Dora E, Greenberg JH, Reivich M (1986) Cerebral glucose metabolism during the recovery period after ischemia-its relationship to NADH-fluorescence, blood flow, EcoG and histology. Stroke 17:994–1004PubMedCrossRefGoogle Scholar
  132. 132.
    Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St. George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884PubMedCrossRefGoogle Scholar
  133. 133.
    Tyce GM, Wong KL (1980) Conversion of glucose to neurotransmitter amino acids in the brain of young and aging rats. Exp Gerontol 15:527–532PubMedCrossRefGoogle Scholar
  134. 134.
    von Hanwehr R, Smith ML, Siesjö BK (1986) Extra- and intracellular pH during nearcomplete forebrain ischemia in the rat. J Neurochem 46:331–339CrossRefGoogle Scholar
  135. 135.
    Walaas I, Fonnum F (1980) Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain. Neuroscience 5:1691–1698PubMedCrossRefGoogle Scholar
  136. 136.
    Westerberg E, Deshpande JK, Wieloch T (1987) Regional differences in arachidonic acid release in rat hippocampal CA1 and CA3 regions during cerebral ischemia. J Cereb Blood Flow Metab 7:189–192PubMedCrossRefGoogle Scholar
  137. 137.
    Whittingham TS, Lipton P (1984) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621CrossRefGoogle Scholar
  138. 138.
    Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycemia. Neurochem Res 8:401–415PubMedCrossRefGoogle Scholar
  139. 139.
    Yasumoto Y, Passonneau JV, Feussner G, Lust WD (1988) Metabolic alterations in fiber layers of the CA1 region of the gerbil hippocampus following short-term ischemia: high-energy phosphates, glucose-related metabolites, and amino acids. Metabol Brain Dis 3:133–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • S. Hoyer
    • 1
  1. 1.Department of Pathochemistry and General NeurochemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations