Selective Vulnerability of the CA1 Sector in the Gerbil After 5 Minutes of Global Ischemia: Relationship to Disturbances in Protein Synthesis and to Motor Hyperactivity

  • R. Widmann
  • T. Kuroiwa
  • P. Bonnekoh
  • K.-A. Hossmann
Conference paper

Abstract

Transient forebrain ischemia of the gerbil is a widely used experimental model for the study of the phenomenon of selective vulnerability in the CA1 sector of hippocampus. Despite the fact that detailed studies are available on the time course of various hemodynamic [16], metabolic [5,12,14], and neuropathological alterations [2,6,7], the causal relationship between the pathobiochemical processes and the development of neuronal death is still poorly understood.

Keywords

Depression Ischemia Dementia Neurol Paraffin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beneviste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in the rat hippocampus during transient cerebral ischemia monitored by microdialysis. J Neurochem 43:1369–1376CrossRefGoogle Scholar
  2. 2.
    Bonnekoh P, Barbier A, Oschlies U, Hossmann KA (1990) Selective vulnerability in the gerbil hippocampus morphological changes after 5 minutes ischemia and long survival times. Acta Neuropathol (Bed) 80:18–25CrossRefGoogle Scholar
  3. 3.
    Crain BJ, Westerkam WD, Harrison AH, Nadler JV (1988) Selective neuronal death after transient forebrain ischemia in the mongolian gerbil: a silver impregnation study. Neuroscience 22:387–402Google Scholar
  4. 4.
    DeLeo J, Toth L, Schubert P, Rudolphi K, Kreutzberg GW (1987) Ischemia-induced neuronal cell death, calcium accumulation, and glial response in the hippocampus of the mongolian gerbil and protection by propentofylline (HWA 285). J Cereb Blood Flow Metabol 7:745–751CrossRefGoogle Scholar
  5. 5.
    Dienel GA, Cruz NF, Rosenfeld SJ (1985) Temporal profiles of protein responsive to transient ischemia. J Neurochem 44:600–610PubMedCrossRefGoogle Scholar
  6. 6.
    Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopical observations. Acta Neuropathol (Berl) 32:209–223CrossRefGoogle Scholar
  7. 7.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  8. 8.
    Kleihues P, Hossmann KA, Pegg AE, Kobayashi K, Zimmermann V (1975) Resuscitation of the monkey brain after one hour complete ischemia. III. Indications of metabolic recovery. Brain Res 95:61–73PubMedCrossRefGoogle Scholar
  9. 9.
    Kuroiwa T, Bonnekoh P, Hossmann KA (1990) Therapeutic window of halothane anesthesia for reversal of delayed neuronal injury in gerbils relationship to post-ischemic motor hyperactivity. (In preparation)Google Scholar
  10. 10.
    Loskota WJ, Lomax P, Verity MA (1974) A stereotaxic atlas of the mongolian gerbil brain. Ann Arbor Science, Ann ArborGoogle Scholar
  11. 11.
    Mies G, Bodsch W, Paschen W, Hossmann KA (1986) Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain. J Cereb Blood Flow Metab 6:59–70PubMedCrossRefGoogle Scholar
  12. 12.
    Munekata K, Hossmann KA, Xie Y, Seo K, Oschlies U (1987) Selective vulnerability of hippocampus ribosomal aggregation, protein synthesis, and tissue pH. In: Raichle ME, Powers WJ (eds) Cerebrovascular diseases, Raven, New York, pp 107–118Google Scholar
  13. 13.
    Mushiroi T, Yamada K, Hayakawa T, Sakaguchi T, Matsumoto K, Kinoshita A (1989) Expression of the proto-oncogene product c-fos protein after transient forebrain ischemia in the gerbil hippocampus. J Cereb Blood Flow Metab 9:175CrossRefGoogle Scholar
  14. 14.
    Nowak TS, Fried RL, Lust WD, Passonneau JV (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 44:487–494PubMedCrossRefGoogle Scholar
  15. 15.
    Siesjö BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki R, Yamaguchi T, Orzi F, Klatzo I (1983) The effect of 5-minute ischemia in mongolian gerbils I. Blood-brain-barrier cerebral blood flow and local cerebral glucose utilisation changes. Acta Neuropathol (Berl) 60:207–216CrossRefGoogle Scholar
  17. 17.
    Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 1:88–93CrossRefGoogle Scholar
  18. 18.
    Vass K, Welch WJ, Nowak TS (1988) Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol (Berl) 77:128–135Google Scholar
  19. 19.
    Widmann R, Kuroiwa T, Bonnekoh P, Hossmann KA (1990) 14C Leucine incorporation into brain proteins in gerbils after transient ischemia relationship to selectively vulnerability of hippocampus. J Neurochem (submitted)Google Scholar
  20. 20.
    Xie Y, Seo K, Hossmann KA (1989) Effect of barbiturate treatment on post-ischemic protein biosynthesis in gerbil brain. J Neurol Sci 92:317–328PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshidomi, M, Hayashi T, Abe K, Kogure K (1989) Effects of a new calcium channel blocker, KB-2796, on protein synthesis of the CA1 pyramidal cells and delayed neuronal death following transient forebrain ischemia. J Neurochem 53:1589–1594PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshimine T, Hayakawa T, Kato A, Matsumoto K, Ushio Y, Mogami H (1987) Autoradiographic study of regional protein synthesis in focal cerebral ischemia with TCA wash and image subtraction techniques. J Cereb Blood Flow Metab 7:387–399PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. Widmann
    • 1
  • T. Kuroiwa
    • 1
  • P. Bonnekoh
    • 1
  • K.-A. Hossmann
    • 1
  1. 1.Department of Experimental NeurologyMax Planck Institute for Neurological ResearchKöln 41Germany

Personalised recommendations