Advertisement

Otoakustische Emissionen — Praktische und klinische Bedeutung

Chapter
Part of the HNO Praxis heute (abgeschlossen) book series (HNO, volume 11)

Zusammenfassung

Das Ohr ist nicht nur in der Lage, akustische Reize zu verarbeiten, sondern auch Schall zu erzeugen. Diese „otoakustischen Emissionen“ (OAE), die von großem wissenschaftlichen Interesse sind, haben bereits vielerorts Einzug gehalten in die klinische Routinediagnostik von Hörstörungen. Sie gehören zu den Entdeckungen des letzten Jahrzehnts, die das Wissen um die Innenohrfunktion revolutioniert und neue Perspektiven für die Zukunft eröffnet haben. Für das Verständnis der otoakustischen Emissionen ist es wichtig, sich die faszinierenden Entwicklungen der letzten 10 Jahre auf dem Gebiet der Innenohrbiologie zu vergegenwärtigen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson SD, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates. Arch Otorhinolaryngol 224: 47–54PubMedCrossRefGoogle Scholar
  2. Békésy G von (1960) Experiments in hearing. McGraw-Hill, New YorkGoogle Scholar
  3. Bonfils P, Uziel A (1987) Recrutement et diplacousie — Conception physiopathologique actuelle. Ann Otolaryngol Chir Cervicofac 104: 213–217PubMedGoogle Scholar
  4. Bonfils P, Uziel A (1988) Evoked otoacoustic émissions in patients with acoustic neuromas. Am J Otol 9: 412–417PubMedGoogle Scholar
  5. Bonfils P, Uziel A, Pujol R (1987) Les Oto-Émissions Acoustiques I. Les oto-émissions provoquées: une nouvelle technique d’exploration fonctionnelle de la cochlée. Ann Otolaryngol Chir Cervicofac 104: 353–360PubMedGoogle Scholar
  6. Bonfils P, Bertrand Y, Uziel A ( 1988 a) Evoked otoacoustic emissions: Normative data and presbyacusis. Audiology 27: 27–35PubMedCrossRefGoogle Scholar
  7. Bonfils P, Uziel A, Pujol R ( 1988 b) Evoked oto-acoustic emissions from adults and infants: Clinical applications. Acta Otolaryngol (Stockh) 105: 445–449CrossRefGoogle Scholar
  8. Bonfils P, Avan P, François M, Marie P, Trotoux J, Narcy P (1990 a) Clinical significance of otoacoustic emissions: a perspective. Ear Hear 11 (No. 2 ): 155–158PubMedCrossRefGoogle Scholar
  9. Bonfils P, Dumont A, Marie P, François M, Marcy P (1990 b) Evoked otoacoustic emissions in newborn hearing screening. Laryngoscope 100: 186–189PubMedCrossRefGoogle Scholar
  10. Bray P, Kemp DT (1987) An advanced cochlear echo technique suitable for infant screening. Br J Audiol 21: 191–204PubMedCrossRefGoogle Scholar
  11. Brownell WE (1983) Observations on a motile response in isolated outer hair cells. In: Webster WR, Aitken LM (eds) Mechanisms of hearing. Monash University Press, pp 5–10Google Scholar
  12. Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Electron Microsc 111: 1401–1406Google Scholar
  13. Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11 (No. 2): 82–92PubMedCrossRefGoogle Scholar
  14. Chouard CH, Sposetti R (1990) Contribution à l’Étude de l’Oreille Absolue. Ann Otolaryngol Chir Craniofac 107: 371–376Google Scholar
  15. Dallmayr C (1985) Spontane oto-akustische Emissionen: Statistik und Reaktion auf akustische Störtöne. Acustica 59: 67–75Google Scholar
  16. Dallos P (1989) Discussion session of cochlear mechanisms. In: Wilson JP, Kemp DT (eds) Cochlear mechanisms; structure, function and models. NATO ASI Series A. Plenum, New York, pp 269–298Google Scholar
  17. Davis H (1983) An active process in cochlear mechanics. Hear Res 9: 79–90PubMedCrossRefGoogle Scholar
  18. Downs MA (1978) Auditory screening. Otolaryngol Clin North Am 11: 611–629PubMedGoogle Scholar
  19. Evans EF (1975) Normal and abnormal functioning of the cochlear nerve. In: Bench RJ, Pye A, Pye JD (eds) Sound reception in mammals. Academic Press, London, pp 133–165Google Scholar
  20. Evans EF, Wilson JP, Borerwe TA (1981) Animal models of tinnitus. Evered, Lawrenson (eds) Tinnitus. Ciba Fdn Sympos. Pitman, London, pp 108–138Google Scholar
  21. Federspil P (1979) Antibiotikaschäden des Ohres. In: Herrmann A, Jakobi H (Hrsg) Hals-Nasen-Ohrenheilkunde, Bd28. Barth, Leipzig, S 1–126Google Scholar
  22. Flock A, Brestcher A, Weber K (1982) Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hear Res 7: 75–89PubMedCrossRefGoogle Scholar
  23. Gerber SE, Jones BL, Costello JM (1977) Behavioral measures. In: Gerber S (ed) Audiometry in infancy. Grune & Stratton, New York, pp 85–97Google Scholar
  24. Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond [Biol] 135: 492–498CrossRefGoogle Scholar
  25. Guerit JM (1985) Applications of surface recorded potentials for the early diagnosis of hearing loss in neonates and premature infants. Acta Otolaryngol [Suppl] (Stockh) 421: 68–76CrossRefGoogle Scholar
  26. Hauser R, Löhle E, Pedersen P (1989) Zur klinischen Anwendung Click-Evozierter Otoakustischer Emissionen an der Freiburger HNO-Klinik (1, 2, 3). Laryngol Rhinol Otol (Stuttg) 68: 661–666Google Scholar
  27. Helmholtz H (1870) Die Lehre von den Tonempfindungen, als physiologische Grundlage für die Theorie der Musik, 3. Ausg. Vieweg, BraunschweigGoogle Scholar
  28. Horst JW, Wit HP, Ristma RJ (1983) Psychophysiological aspects of cochlear acoustic emissions. In: Klinke R, Hartman R (eds) Hearing - physiological bases and psychophysics. Springer, Berlin Heidelberg New York, pp 89–96Google Scholar
  29. Johnsen NJ, Bagi P, Parbo J, Elberling C (1988) Evoked acoustic emissions from the human ear. IV. Final results in 100 neonates. Scand Audiol 17: 27–34PubMedCrossRefGoogle Scholar
  30. Johnson NJ, Parbo J, Elberling C (1989) Evoked acoustic emissions from the human ear. Scand Audiol 18: 59–62CrossRefGoogle Scholar
  31. Kemp DT (1978) Stimulated acoustic emissions from the human auditory system. J Acoust Soc Am 64: 1386–1391PubMedCrossRefGoogle Scholar
  32. Kemp DT, Chum RA (1980) Observations on the generator-mechanism of stimulus frequency acoustic emissions — two-tone suppression. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological, and behavioral studies in hearing. Delft University Press, Delft, pp 34–42CrossRefGoogle Scholar
  33. Kemp DT, Bray P, Alexander L, Brown AM (1986) Acoustic emission cochleography — practical aspects. Scand Audiol [Suppl] 25: 71–82Google Scholar
  34. Kemp DT, Ryan S, Bray P (1990) A guide to the effective use of otoacoustic emissions. Ear Hear 11 (No. 2): 93–105PubMedCrossRefGoogle Scholar
  35. Koch A (1986) Histocochleographische Untersuchungen zur Spätototoxizität neuerer Aminoglykosid-Antibiotika. DissertationGoogle Scholar
  36. Martin GK, Probst R, Lonsbury-Martin BL (1990) Otoacoustic emissions in human ears: Normative findings. Ear Hear 11 (No. 2): 106–120PubMedCrossRefGoogle Scholar
  37. McFadden D, Plattsmier HS (1984) Aspirin abolishes spontaneous oto-acoustic emissions. J Acoust Soc Am 76: 443–448PubMedCrossRefGoogle Scholar
  38. McFadden D, Plattsmier HS, Pasanen EG (1984) Aspirin-induced hearing loss as a model of sensorineural hearing loss. Hear Res 16: 251–260PubMedCrossRefGoogle Scholar
  39. Norton SJ, Champlin CA, Mott JB (1986) Effect of intense sound exposure on spontaneous otoacoustic emissions. J Acoust Soc Am 79 [Suppl 1]:S 5CrossRefGoogle Scholar
  40. Norton SJ, Schmidt AR, Stover LJ (1990) Tinnitus and otoacoustic emissions: Is there a link? Ear Hear 11 (No. 2) 159–166PubMedCrossRefGoogle Scholar
  41. Penner MJ (1989) Aspirin abolishes tinnitus caused by spontaneous otoacoustic emissions. Arch Otolaryngol Head Surg 115: 871–875CrossRefGoogle Scholar
  42. Plinkert PK, Sesterhenn G, Arold R, Zenner HP (1990) Evaluation of otoacoustic emissions in high-risk infants by using an easy and rapid objective auditory screening method. Eur Arch Otorhinolaryngol 247: 356–360PubMedCrossRefGoogle Scholar
  43. Probst R (1990) Otoacoustic emissions: An overview. In: Pfaltz CR (ed) New aspects of cochlear mechanics and inner ear pathophysiology. Advances in Otorhinolaryngology, vol 44. Karger, Basel, pp 1–91Google Scholar
  44. Probst R, Coats AC, Martin GK, Lonsbury-Martin BL (1986) Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 21: 261–275PubMedCrossRefGoogle Scholar
  45. Puel J-L, Bonfils P, Pujol R (1988) Selective attention modifies the active micromechanical properties of the cochlea. Brain Res 447: 380–383PubMedCrossRefGoogle Scholar
  46. Rossi G, Solero P (1988) Evoked otoacoustic emissions ( EOAE) and bone conduction stimulation. Acta Otolaryngol (Stockh) 105: 591–594CrossRefGoogle Scholar
  47. Salonna I, Bartoli R, Longo G (1990) Evoked acoustic otoemissions: effects of atropine. Boll Soc Ital Biol Sper 66 (2): 167–171PubMedGoogle Scholar
  48. Spoendlin H (1971) Innervation densities of the cochlea. Acta Otolaryngol (Stockh) 73: 235–248CrossRefGoogle Scholar
  49. Strickland AE, Burns EM, Tubis A (1985) Incidence of spontaneous otoacoustic emissions in children and infants. J Acoust Soc Am 78: 931–935PubMedCrossRefGoogle Scholar
  50. Wit HP, Ritsma RJ (1980) Evoked acoustical responses from the human ear: Some experimental results. Hear Res 2: 253–261PubMedCrossRefGoogle Scholar
  51. Wit HP, Langevoort JC, Ritsma RJ (1981) Frequency spectra of cochlear acoustic emissions ( Kemp-echoes ). J Acoust Soc Am 70: 437–445CrossRefGoogle Scholar
  52. Zenner HP, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hearing Res 18: 127–133CrossRefGoogle Scholar
  53. Zurek P (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69: 514–523PubMedCrossRefGoogle Scholar
  54. Zwicker E (1983) Delayed evoked oto-acoustic emissions and their suppression by Gaussian-shaped pressure impulses. Hear Res 11: 359–371PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. Koch

There are no affiliations available

Personalised recommendations