Aspects of Efficient and Reliable Multibody System Simulation

  • R. Schwertassek
  • W. Rulka
Part of the NATO ASI Series book series (volume 69)


Multibody system equations can be generated in various forms. All of these may be interpreted as results of two basic approaches, the augmentation- and the elimination-method. The former method yields the descriptor form of the system motion, a set of differential-algebraic equations (DAE), and the latter the state space representation, a minimal set of ordinary differential equations (ODE). Both of these methods are surveyed. Particular emphasis is on the discussion of recursive computational schemes, generating the equations of motion with a number of operations, which is proportional to the number N of system bodies (O(N)-formulations).

For simulation purposes one would like to create that set of system equations, which can be generated most efficiently and for which the most efficient and reliable solution techniques are available. Numerical solution techniques for ODE have been studied in great detail and they are well-developed. By contrast, DAE have not been investigated for such a long time. In view of new developments in the latter field the generation of all the equations required for an efficient and reliable solution of DAE describing multibody system motion is discussed. These methods, i.e. an O(N)-formulation and new techniques for solving DAE, are implemented in the SIMPACK code. Its capabilities are illustrated by simulation of multibody mechanisms and robots.


Constraint Equation Multibody System Constraint Force Multi Body System State Space Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, W. W.: Recursive Solution to the Equations of Motion of an N Link Manipulator, Proc. 5th World Congr. Theory of Machines and Mechanisms, Vol. 2, 1979, pp. 1343–1346.Google Scholar
  2. 2.
    Asada, H., Kanade, T., Takeyama, I.: Control of a Direct Drive Arm, J. Dyn. Syst. Meas. Ctrl., vol. 105 (1983) pp. 136–142.CrossRefGoogle Scholar
  3. 3.
    Bae, D. S., Haug, E. J.: A Recursive Formulation for Constrained Mechanical System Dynamics: Part I, Open Loop Systems, Mechanics of Structures and Machines, 15 (1987) pp. 359–382.CrossRefGoogle Scholar
  4. 4.
    Bae, D. S., Haug, E. J.: A Recursive Formulation for Constrained Mechanical System Dynamics: Part II, Closed Loop Systems, Mechanics of Structures and Machines, 15 (1987) pp. 481–506.CrossRefGoogle Scholar
  5. 5.
    Bianchi, B., Schiehlen, W., (eds.): Dynamics of Multibody Systems, Proc. lUTAM/IFToMM-Symposium, Udine, 1985, Springer-Verlag, Berlin, 1986.Google Scholar
  6. 6.
    Brandl, H., Johanni, R., Otter, M.: A very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix, IFAC/IFIP/IMACS Int. Symposium on Theory of Robots, Wien, 1986.Google Scholar
  7. 7.
    Brandl, H., Johanni, R., Otter, M.: An Algorithm for the Simulation of Multibody Systems with Kinematic Loops, Proc. 7th World Congress The Theory of Machines and Mechanisms, Sevilla, Spain, 1987, Vol. 1, pp. 407–411.Google Scholar
  8. 8.
    Ebert, K., Graul, S., Schwertassek, R.: Simulation von Mehrkörpersystemen; Methode, Stand der Technik und Anforderungen für orbitale Systemdynamik, DGLR-Jahrbuch 1988 I, pp. 226–235.Google Scholar
  9. 9.
    Featherstone, R.: The Calculation of Robot Dynamics Using Articulated-Body Inertias, Robotics Research, vol. 2, no. 1, 1983, pp. 13–30.CrossRefGoogle Scholar
  10. 10.
    Featherstone, R.: Robot Dynamics Algorithms, Ph. D. Dissertation, Univ. of Edinburgh, 1984.Google Scholar
  11. 11.
    Featherstone, R., Robot Dynamics Algorithms, Kluwer Academic Publ., Boston, 1987.Google Scholar
  12. 12.
    Führer, C.: On the Description of Constrained Mechanical Systems by Differential/Algebraic Equations, in: Neunzert, H. (ed.). The Road-Vehicle-Sys- tem and Related Mathematics, Teubner, Stuttgart, 1985.Google Scholar
  13. 13.
    Führer, C.: Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen–Theorie, numerische Ansätze und Anwendungen, Dissertation, Mathematisches Institut der Technischen Universität München, 1988.Google Scholar
  14. 14.
    Führer, C., Schwertassek, R.: Generation and Solution of Multibody System Equations, to appear in Intl. Journal of Nonl. Mechanics (1989).Google Scholar
  15. 15.
    Führer, C, Leimkuhler, B.: Stabilized Differential–Algebraic Formulation of the Equations of Motion of Constrained Mechanical Systems, NATO Advanced Research Workshop Real-Time Integration Methods for Mechanical System Simulation, Snowbird, Utah, Aug. 1989.Google Scholar
  16. 16.
    Haug, E. J., Nikravesh, P. E., Sohoni, V. N., Wehage, R. A.: Computer Aided Analysis of Large Scale, Constrained, Mechanical Systems, 4th International Symposium on Large Engineering Systems, Calgary Alberta, Canada, June 1982.Google Scholar
  17. 17.
    Haug, E. J. (ed.): Nato Advanced Study Institute on Computer Aided Analysis and Optimization of Mechanical System Dynamics, Iowa City, 1983, Springer- Verlag, Berlin, 1984.Google Scholar
  18. 18.
    Haug, E. J.: Parallel Processing Real Time Dynamic Simulation, Proc. Workshop Multibody Simulation, G. Man, R. Laskin,., JPL D-5190, Pasadena, Cal., 1988, pp. 1019–1070.Google Scholar
  19. 19.
    Hiller, M., Kecskemethy, A., Woernle, C.: A Loop-Based Kinematical Analysis of Spatial Mechanisms, ASME Paper 86-DET-184, New York, 1986.Google Scholar
  20. 20.
    Hiller, M., Woernle, C.: The “Characteristic Pair of Joints” –an Effective Approach for the Inverse Kinematics Problem of Robots, Proc. IEEE Conf. Robotics and Automation, vol. 2, pp. 846–851, Philadelphia, April 1988.Google Scholar
  21. 21.
    Jones, R. E., Morse, T. W., Russell, W. C.: High Speed Simulation of Multi- Flexible-Body Systems with Large Rotations, Paper No. AIAA-87-0930, Dynamics Specialists Conference, Monterey, Cal., April 9–10, 1987.Google Scholar
  22. 22.
    Jones, R. E.: Multiflex Body Dynamics for Control Design, SDIO/NASA Workshop on Multibody Simulation, G. Man, R. Laskin,., JPL D-5190, April 1988, pp. 354–382.Google Scholar
  23. 23.
    Kane, T. R., Levinson, D. A.: Dynamics: Theory and Applications, McGraw-Hill, NY, 1985.Google Scholar
  24. 24.
    Kane, T. R., Ryan, R. R., Banerjee, A. K.: Dynamics of a Cantilever Beam Attached to a Moving Base, J. Guidance, Control, and Dynamics, vol. 10, no. 2, 1987, pp. 139–151.CrossRefGoogle Scholar
  25. 25.
    Kortüm, W., (ed.): Software for Dynamic Analysis and Design of Mechanical Systems, Course V1. 08, Carl-Cranz-Gesellschaft, Oberpfaffenhofen, 1984.Google Scholar
  26. 26.
    Luenberger, D. G.: Dynamic Equations in Descriptor Form, IEEE Trans. Automatic Control 22 (1977) pp. 312–321.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Magnus, K., (ed.): Dynamics of Multibody Systems, Proc. lUTAM-Symposium München, 1977, Springer-Verlag, Berlin, 1978.Google Scholar
  28. 28.
    Man, G., Laskin, R., (eds.): Proceedings of the Workshop on Multibody Simulation, JPL D-5190, vols. I, II, III, Pasadena, Cal., April 1988.Google Scholar
  29. 29.
    Orlandea, N.: Node-Analogous, Sparsity-Oriented Methods for Simulation of Mechanical Systems, Ph.D. Dissertation, Univ. Michigan, 1973.Google Scholar
  30. 30.
    Orlandea, N., Chace, M. A., Calahan, C. A.: A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems, J. Engrg. Ind. 99, 1977, pp. 773–784.CrossRefGoogle Scholar
  31. 31.
    Pfeiffer, F.: Über unstetige, insbesondere stosserregte Schwingungen, Zeitschr. Flugwiss. Weltraumforsch. 12 (1988) pp. 358–367.Google Scholar
  32. 32.
    Roberson, R. E., Wittenburg, J.: A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies, with Reference to the Problem of Satellite Attitude Control, Proc. 3rd Congr. Int. Fed. Autom. Control, London, 1966, Butterworth, Vol. 1, Book 3, Paper 46D, 1967.Google Scholar
  33. 33.
    Roberson, R. E.: Computer-Oriented Dynamic Modeling of Spacecraft: Historical Evolution of Eulerian Formalisms since 1750, 28th International Astronau- tical Congress (Prague, 25 Sep-1 Oct 1977), IAF Paper 77-A 11.Google Scholar
  34. 34.
    Roberson, R. E.: A Multibody Eulerian Dynamic Simulation as a Design Tool for Attitude Dynamics and Control, Proc. AOCS Conf., ESA Rept. SP-128, Noordwyk, 1977, pp. 209–220.Google Scholar
  35. 35.
    Roberson, R. E.: The Path Matrix of a Graph, its Construction and its Use in Evaluating Certain Products, Computer Meths. Appl. Mech. Engrg. 42, 1984, pp. 42–56.Google Scholar
  36. 36.
    Roberson, R. E., Schwertassek, R.: Dynamics of Multibody Systems, Spring- er-Verlag, Berlin, 1988.zbMATHGoogle Scholar
  37. 37.
    Rosenthal, R.: Order N Formulation for Equations of Motion of Multibody Systems, SDIO/NASA Workshop on Multibody Simulation, JPL, Arcadia, Cal., Sept. 1–3, 1987, pp. 1122–1150.Google Scholar
  38. 38.
    Rulka, W.; SIMPACK, Ein Rechenprogramm zur Simulation von Mehrkoerper- systemen mit grossen Bewegungen, Computergestuetztes Berechnen und Konstruieren, 10. Reutlinger Arbeitstagung, April 1989.Google Scholar
  39. 39.
    Rulka, W.: SIMPACK, a Computer Program for Simulations of Large-Motion Multibody Systems, to appear in Handbook of Multibody Programs, W. Schiehlen (ed.), Springer-Verlag, Berlin.Google Scholar
  40. 40.
    Schiehlen, W.: Technische Dynamik, B. G. Teubner, Stuttgart, 1986.Google Scholar
  41. 41.
    Schwertassek, R.: Der Roberson/Wittenburg Formalismus und das Programmsystem MULTIBODY zur Rechnersimulation von Mehrkörpersystemen, DFVLR-FB-78-08, DFVLR, Wissenschaftliches Berichtswesen, Köln, 1978.Google Scholar
  42. 42.
    Schwertassek, R., Senger, K.-H.: Representation of Joints in Multibody Systems, ZAMM 68 (1988), pp. 111–119.zbMATHCrossRefGoogle Scholar
  43. 43.
    Schwertassek, R.: Multibody Kinematical Equations in Terms of Relative Variables, ZAMM 68 (1988), pp. 207–211.zbMATHCrossRefGoogle Scholar
  44. 44.
    Bchberger A.: Recursive Generation of Multibody System Equations in Terms of Graph Theoretic Concepts, to appear in Mechanics of Structures and Machines, Vol 17.No.2. 1989.Google Scholar
  45. 45.
    Vereshohagn. A. F.: Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators, Engineering Cybernetics, no. 6 1974. pp. 65–7O.Google Scholar
  46. 46.
    Wehege R. A., Haug, E. J.: Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems, J. Mech. Design, Vol. 134. 1982. pp.247–255.CrossRefGoogle Scholar
  47. 47.
    Wehaoe. R. A.: Solution of Antibody Dynamics Using Natural Factors and Iterative Refinement, Part I: Open KinemmtoLoops, Pert 11: Closed Kinematic Loops, to appear.Google Scholar
  48. 48.
    Wettenburg. J.: Dynamics of Systems of Rigid Bodies. B.G. Teubner. Stuttgart, 1877.Google Scholar
  49. 49.
    Woernle. C.: Eln syetematisches Verfahren fdrdie Ruokwsrtstransformation bei nduotrierobmtern, Robotersysderne 8 (1987). pp. 219–22B.Google Scholar
  50. 50.
    Woernle C.: Bneyotemed1sohes Verfahrenzur Aufsteiiung dergeometrisnhmn Sohiiessbedingungen in kinematischen Schieifen mmit Anvvendung bei der Rcinhwddstrmnsformedion for Industrieroboter Fodschritt-Berichte VDI. Reihe 18, Nr.59.VDI-Verlag Dosseldorf. 1988.Google Scholar
  51. 51.
    Jaschinski A.: Anvvendung derkalkersohen Roiireibungethemrle zurdynmmisohen Simulation von Schienenfehrzeuqen. DFVLR-Fonsohunqsbedoht. DFVLR-FB-87-07, DFVLR. Wiss. Berichtsvvesen. Kbin 19B7.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. Schwertassek
    • 1
  • W. Rulka
    • 2
  1. 1.Institut für Dynamik der FlugsystemeDLROberpfaffenhofenW. Germany
  2. 2.MAN TechnologieMünchenWest-Germany

Personalised recommendations