Sharpening of orientation selective receptive fields in the mammalian visual cortex by long-range interactions

  • Ernst Niebur
  • Florentin Wörgötter
Conference paper
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 251)

Abstract

Lateral intracortical interactions are believed to be responsible for the sharpening of the receptive field profiles of visual cortical cells. This study demonstrates a structurally imposed limitation of long range interactions on the frequently invoked cross orientation inhibition scheme: it leads to inhomogeneous input for different cell populations which is experimentally not observed. We propose a novel connection scheme called “circular inhibition“ which circumvents this problem. The scheme is analyzed by computer simulation of the early visual system of the cat, and by studying a simple analytically solvable model. Our model yields results consistent with the experimentally determined structure of the orientational hypercolumns in area 18 of the cat.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, K. (1975a,b). A quantitative study of the projection area of the central and paracentral visual field in area 17 of the cat. I. the precision of the topography., II. The spatial organization of the orientation domain. Exp. Brain Res., 24: 159–202.CrossRefGoogle Scholar
  2. Batschelet, E. (1981) Circular statistics in biology, Academic Press, New York.MATHGoogle Scholar
  3. Braitenberg, V. (1984). Charting the visual cortex, in: Cerebral cortex, Vol 3., A. Peters and E.G. Jones (eds.), Plenum Press N.Y.Google Scholar
  4. Dowling, J. E. (1987). The Retina: An Approachable Part of the Brain Belknapp Press of Harvard University Press, Cambridge, MA.Google Scholar
  5. Durbin, R. and Mitchison, G.(1990). A dimension reducing framework for understanding cortical maps. Nature 343, 644–647.CrossRefGoogle Scholar
  6. Ferster, D. and Koch, C. (1987) Trends in the Neurosciences 10: 487–492.CrossRefGoogle Scholar
  7. Hata, Y., Tsumoto, T., Sato, H., Hagihara, K. and Tamura, H. (1988). Inhibition contributes to orientation selectivity in visual cortex of cat. Nature, 335: 815–817.CrossRefGoogle Scholar
  8. Hubel, D.H., and Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154.Google Scholar
  9. Hubel, D.H., and Wiesel, T.N. (1963). Shape and arrangement of columns in cat’s striate cortex. J. Physiol. (Lond.), 165: 559–568.Google Scholar
  10. Mead, C. (1988) Analog VLSI and Neural Systems Addison-Wesley, Reading MA.Google Scholar
  11. Sillito, A.M. (1979) Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J. Physiol 289: 33–53.Google Scholar
  12. Sillito, A.M. (1984) Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral cortex, Vol. 2., A. Peters and E.G. Jones (eds.), Plenum Press N.Y.Google Scholar
  13. Swindale, N.V., Matsubara, J.A. and Cynader, M.S. (1987) Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci 7, 1414–1427.Google Scholar
  14. Thibos, L.N. and Levick, W.R. (1985) Orientation bias of brisk transient Y-cells of the cat retina for drifting and alternating grating. Exp. Brain Res 58, 1–10.CrossRefGoogle Scholar
  15. Wörgötter, F. and Eysel, U.Th. (1987) Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli.Biol. Cybern 57: 349–355.CrossRefGoogle Scholar
  16. Wörgötter, F. and Eysel, U.Th. (1990). Contributions of intracortical excitation and inhibition to orientation specificity in area 17 of the cat visual cortex, (submitted) Google Scholar
  17. Wörgötter, F., Niebur, E. and Koch, C. (1990). Modeling visual cortex: Hidden anisotropies in an isotropic inhibitory connection scheme. In: Advanced Neural Computers, R. Eckmiller (ed.), Elsevier, Amsterdam. 87–95.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ernst Niebur
    • 1
  • Florentin Wörgötter
    • 2
  1. 1.Computation and Neural Systems ProgramCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Institut für NeurophysiologieRuhr-Universität BochumBochumWest Germany

Personalised recommendations