Nonlinearities in Phosphogenesis and Phosphorus-Carbon Coupling and Their Implications for Global Change

  • Karl B. Föllmi
  • Helmut Weissert
  • Andrea Lini
Part of the NATO ASI Series book series (volume 4)

Abstract

The exponential increase in mining of igneous and sedimentary phosphates, and their utilization in agriculture, industry, and the household in the last few decades have lead to a progressive mobilization of phosphorus, which affects the global phosphorus cycle to an increasing degree (Sheldon, 1969, 1982; Stumm, 1973; Lerman et al., 1975). The present-day anthropogenic share in the transfer of reactive phosphorus from sedimentary and igneous reservoirs into the marine and terrestrial biosphere amounts to an estimated 0.4x1012 g P/yr. This number approximates 35% of total phosphorus influx rates into the oceans and, according to Mackenzie et al. (this volume), may balance 10% of the yearly increase in atmospheric CO2 from manmade sources, assuming an average atomic C/P ratio of 250:1, and a complete and permanent storage of the biologically produced carbon (Figure 1; cf. Mackenzie et al.; Meybeck, both this volume).

References

  1. Arthur M. A. and Jenkyns H. C. (1981) Phosphorites and paleoceanography. Oceanol. Acta Spec. Vol., pp. 83–96.Google Scholar
  2. Arthur M. A., Jenkyns H. C., Brumsack H. J. and Schianger S. O. (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Cretaceous Resources, Events and Rhythms (eds. R. N. Ginsburg and B. Beaudoin ). Kluwer Academic Publishers, Dordrecht, pp. 75–119.Google Scholar
  3. Arthur M. A., Kump L. R., Dean W. E. and Larson R. L. (1991) Superplume, supergreenhouse? EOS, Trans. Am. Geophys. Union, Suppl. 72/17, 301.Google Scholar
  4. Arthur M. A. and Schlanger S. O. (1979) Cretaceous “Oceanic Anoxic Events” as causal factors in development of reef-reservoired giant oil fields. Am. Assoc. Petr. Geol. Bull. 63, 870–885.Google Scholar
  5. Baksi A. K. (1990) Timing and duration of Mesozoic-Tertiary flood-basalt volcanism. EOS, Trans. Am. Geophys. Union 71, 1835–1840.Google Scholar
  6. Baksi A. K., Fodor R. V. and Farrar E. (1991a) Preliminary results of 40Ar/39Ar dating studies on rocks from the Serra Geral flood-basalt province and the Brazilian continental margins. EOS, Trans Am Geophys Union, Suppl. 72/17, 300.Google Scholar
  7. Baksi A. K., Raybarman T., Paul D. K., Scott R. and McKay K. (1991b) Geochronology and geochemical data for the Rajmahal-Bengal-Sylhet traps: implications for a genetic link to the Kerguelen Hotspot. EOS, Trans. Am. Geophys. Union, Suppl. 72/17, 300.Google Scholar
  8. Bakun A. (1990) Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201.Google Scholar
  9. Baturin G. N. (1988) Disseminated phosphorus in oceanic sediments–a review. Mar. Geol. 84, 95–104.Google Scholar
  10. Bentor Y. K. (1980) Phosphorites–the unsolved problems. In: Marine Phosphorites–Geochemistry, Occurrence, Genesis (ed. Y. K. Bentor). Soc. Econ. Paleontol. Mineral. Spec. Publ. 29, 3–18.Google Scholar
  11. Berger W. H., Smetacek V. S. and Wefer G (1989) Ocean productivity and paleo-productivity–an overview. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley, Chichester, pp. 1–34.Google Scholar
  12. Berger W. H. and Winterer E. L. (1974) Plate stratigraphy and the fluctuating carbonate line. In: Pelagic Sediments: on Land and under the Sea (eds. K. J. Hsü and H. C. Jenkyns). Int. Assoc. Sedimentol. Spec. Publ. 1, 11–48.Google Scholar
  13. Berner R. A. (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249, 1382–1386.Google Scholar
  14. Berner R. A. and Canfield D. E. (1989) A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361.Google Scholar
  15. Berner R. A. and Lasaga A. C. (1989) Modeling the geochemical carbon cycle. Sci. Am. 260/3, 74–81.Google Scholar
  16. Besairie H. (1961) Les Ressources Minérales de Madagascar. Ann. Géol. Madagascar 30, 116 p.Google Scholar
  17. Besairie H. and Collignon M. (1972) Géologie de Madagascar. I. Les Terrains Sédimentaires. Ann. Géol. Madagascar 35, 324 p.Google Scholar
  18. Bralower T. J., Leckie R. M., Sliter W. V., Allard D., Arthur M. A. and Schianger S. O. (1990) Oceanwide anoxia in the early Aptian. Soc. Econom. Paleontol. Mineral, Res. Confer. “Cretaceous Resources, Events, and Rhythms”, August 20–24, 1990, Denver, Colorado, Abstr. Vol.Google Scholar
  19. Bréhéret J. G. (1991) Phosphatic concretions in black facies of the Aptian-Albian Marnes bleues Formation of the Vocontian basin (SE France), and at DSDP Site 369: Evidence of benthic microbial activity. Cret. Res. 12, 411–435.Google Scholar
  20. Bréhéret J. G. and Delamette M. (1989) Correlations between Mid-Cretaceous Vocontian black shales and Helvetic phosphorites in the Western External Alps. In: Cretaceous of the Western Tethys (ed. J. Wiedmann ). Schweizerbart, Stuttgart, pp. 637–655.Google Scholar
  21. Caldeira K. and Rampino M. R. (1991) The Mid-Cretaceous super plume, carbon dioxide, and global warming. Geophys. Res. Lett. 18, 987–990.Google Scholar
  22. Coccioni R., Franchi R., Nesci O., Wezel F. C., Battistini F. and Pallechi P. (1989) Stratigraphy and mineralogy of the Selli Level (early Aptian) at the base of the Marne a Fucoidi in the Umbro-Marchean Apennines (Italy). In: Cretaceous of the Western Tethys (ed. J. Wiedmann ). Schweizerbart, Stuttgart, pp. 563–584.Google Scholar
  23. Codispoti L. A. (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley, Chichester, pp. 377–394.Google Scholar
  24. Cook P. J. (1984) Spatial and temporal controls on the formation of phosphate deposits–A review. In: Phosphate Minerals (eds. J. O. Nriagu and P. B. Moore ). Springer-Verlag, Berlin, pp. 242–274.Google Scholar
  25. Cook P. J. and McElhinny M. W. (1979) A re-evaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol. 74, 315–330.Google Scholar
  26. Compton J. S., Snyder S. W. and Hodell D. A. (1990) Phosphogenesis and weathering of shelf sediments from the southeastern United States: Implications for Miocene 6 13 C excursions and global cooling. Geology 18, 1227–1231.Google Scholar
  27. Crowley T. J. and North G. R. (1988) Abrupt climate change and extinction events in earth history. Science 240, 996–1002.Google Scholar
  28. Dean W. E. and Arthur M. A. (1987) Inorganic and organic geochemistry of Eocene to Cretaceous strata recovered from the lower continental rise, North American Basin, Site 603, DSDP. In: Init. Repts. DSDP (eds. J. E. Van Hinte, S. W. Wise, et al). 93, 1093–1137.Google Scholar
  29. Delamette M. (1988) L’Evolution du Domaine Helvétique (entre Bauges et Morcles) de l’Aptien Supérieur au Turonien. Publ. Dép. Géol. Paléontol. Univ. Genève 5, 316 p.Google Scholar
  30. Dott R. H. Jr. (1988) Something old, something new, something borrowed, something blue–a hindsight and foresight of sedimentary geology. J. Sediment. Petrol. 58, 358–364.Google Scholar
  31. Eppley R. W. (1989) New production: History, methods, problems. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley, Chichester, pp. 85–97.Google Scholar
  32. Erba E. and Lottaroli F. (1990) Timing and paleoceanography of Aptian-Albian anoxic events from Italian sequences: The contribution of calcareous nannofossils. Soc. Econom. Paleontol. Mineral, Res. Confer. “Cretaceous Resources, Events, and Rhythms”, August 20–24, 1990, Denver, Colorado, Abstr. Vol.Google Scholar
  33. Fischer A. G. and Arthur M. A. (1977) Secular variations in the pelagic realm. In: Deep-Water Carbonate Environments (eds. H. E. Cook and P. Enos). Soc. Econ. Paleontol. Mineral Spec. Publ. 25, 19–50.Google Scholar
  34. Föllmi K. B. (1989) Evolution of the Mid-Cretaceous Triad: Platform Carbonates, Phosphatic Sediments, and Pelagic Limestones along the Northern Tethys Margin. Lecture Notes Earth Sci. 23, 153 p.Google Scholar
  35. Föllmi K. B. (1990) Condensation and phosphogenesis: example of the Helvetic mid-Cretaceous (northern Tethyan margin). In: Phosphorite Research and Development (eds. A. J. G. Notholt and I. Jarvis). Geol. Soc. Spec. Publ. 52, 237–252.Google Scholar
  36. Föllmi K. B. and Von Breymann M. (in press) Phosphates and glauconites of Leg 128, Sites 798 and 799 (Japan Sea). In: Proc. ODP Sci. Res. (eds. K. Tamaki, J. C. Ingle, K. Suyehiro, K. Pisciotto, et al.). 127/128.Google Scholar
  37. Föllmi K. B. and Garrison R. E. (1991) Phosphatic sediments, ordinary or extraordinary deposits? The example of the Miocene Monterey Formation (California). In: Controversies in Modern Geology (eds. D. Müller, J. A. McKenzie and H. Weissert ). Academic Press, London, pp. 55–84.Google Scholar
  38. Föllmi K. B., Garrison R. E. and Grimm K. A. (1991) Stratification in phosphatic sediments: Illustrations from the Neogene of California. In: Events and Cycles in Stratigraphy (eds. G. Einsele, W. Ricken and A. Seilacher ). Springer-Verlag, Berlin, pp. 492–507.Google Scholar
  39. Föllmi K. B. and Ouwehand P. J. (1987) Garschella-Formation und Götzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus dem Helvetikum der Ostschweiz und des Vorarlbergs. Eclogae Geol. Heiv. 80, 141–191.Google Scholar
  40. Frakes L. A. and Bolton B. R. (1984) Origin of manganese giants: sea-level change and anoxic-oxic history. Geology 12, 83–86.Google Scholar
  41. Froelich P. N. (1984) Interaction of the marine phosphorus and carbon cycles. Publ. Jet. Prop. Lab. NASA, Pasadena, 84/12, 141–176.Google Scholar
  42. Froelich P. N., Bender M. L., Luedtke N. A., Heath G. R. and DeVries T. (1982) The marine phosphorus cycle. Am. J. Sci. 282, 474–511.Google Scholar
  43. Gächter R., Meyer J. S. and Mares A. (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33, 1542–1558.Google Scholar
  44. Garrels R. M., Mackenzie F. T. and Hunt C. (1975) Chemical Cycles and the Global Environment. Kaufmann, Los Altos, 206 p.Google Scholar
  45. Garrison R. E., Kastner M. and Kolodny Y. (1987) Phosphorites and phosphatic rocks in the Monterey Formation and related Miocene units, coastal California. In: Cenozoic Basin Development of Coastal California (eds. R. V. Ingersoll and W. G. Ernst ). Rubey Vol VI, Prentice-Hall, New Jersey, pp. 348–381.Google Scholar
  46. Garrison R. E., Kastner M. and Reimers C. E. (1990) Miocene phosphogenesis in California. In: Phosphate Deposits of the World, 3, Neogene to Modern Phosphorites (eds. W. C. Burnett and S. R. Riggs ). Cambridge University Press. pp. 285–300.Google Scholar
  47. Glenn C. R. and Arthur M. A. (1990) Anatomy and origin of a Cretaceous phosphoritegreensand giant, Egypt. Sedimentology 37, 123–154.Google Scholar
  48. Hadji S. (1991) Stratigraphie isotopique des carbonates pelagiques (Jurassique supérieur-Crétacé inférieur) du Bassin d’Ombrie-Marckes (Italie). Ph.D. Thesis Univ. Pierre et Marie Curie, Paris, 118 p.Google Scholar
  49. Haldimann P. A. (1977) Sedimentologische Entwicklung der Schichten an einer Zyklengrenze der helvetischen Unterkreide: Pygurus-Schichten und Gemsmättli-Schicht (Valanginian/Hauterivian) zwischen Thunersee und St. Galler Rheintal. Mitt. Geol. Inst. ETH Univ. Zürich NF 219, 183 p.Google Scholar
  50. Hallam A. (1984) Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47, 195–223.Google Scholar
  51. Harland W. B., Armstrong R. L., Cox A. V., Craig L. E., Smith A. G. and Smith D. G. (1990) A Geological Time Scale 1989. Cambridge University Press, 263 p.Google Scholar
  52. Iacumin P., Piccirillo E. M. and Longinelli A. (1991) Oxygen isotopic composition of Lower Cretaceous tholeiites and Precambirna basement rocks from the Parana basin (Brazil): The role of water-rock interaction. Chem. Geol. 86, 225–237.Google Scholar
  53. Ilyin A. V. and Krasilnikova N. A. (1989) Late Mesozoic phosphorite basins, USSR. In: Notholt A. J. G., Sheldon R. P. and Davidson D. F. (eds) Phosphate Deposits of the World, 2, Phosphate Rock Resources. Cambridge University Press, pp. 518–524.Google Scholar
  54. Isaacs C. M. (1987) The Miocene Monterey Formation - Depositional and diagenetic facies along the Santa Barbara, California coastal area. In: Field Notes on the Monterey Formation, Santa Barbara Area, California (ed. C. M. Isaacs). Am. Assoc. Petrol. Geol. Stud. Chapt. Fieldtrip 1 Guide Book, pp. 1–30.Google Scholar
  55. Jarvis I. (1980) The initiation of phosphatic chalk sedimentation–The Senonian (Cretaceous) of the Anglo-Paris Basin. In: Marine Phosphorites–Geochemistry, Occurrence, Genesis (ed. Y. K. Bentor). Soc. Econ. Paleontol. Mineral Spec. Publ. 29, 167–192.Google Scholar
  56. Kemper E. (1983) Über Kalt-und Warmzeiten der Unterkreide. Zitteliana 10, 359–369.Google Scholar
  57. Kennedy W. J. and Garrison R. E. (1975) Morphology and genesis of hardgrounds and nodular chalk in the Upper Cretaceous of Southern England. Lethaia 8, 339–360.Google Scholar
  58. Klemme H. D. and Ulmishek G. F. (1991) Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. Bull. Am. Assoc. Petrol. Geol. 75, 1809–1851.Google Scholar
  59. Kuzvart M. and Konta J. (1968) Kaoline and laterite weathering crusts in Europe. Acta Univ. Carol. Geol. Ser., Prague, 1/2, 1–19.Google Scholar
  60. Larson R. L. (1991a) The latest pulse of the earth: evidence for a Mid-Cretaceous super plume. Terra Abstr. 3, 306.Google Scholar
  61. Larson R. L. (1991b) Consequences of super plumes. EOS, Trans. Am. Geophys. Union Suppl. 72/17, 301.Google Scholar
  62. Leanza H. A., Spiegelman A. T., Hugo C. A., Mastandrea O. and Oblitas C. J. (1989) Phanerozoic sedimentary phosphatic rocks of Argentina. In: Phosphate Deposits of the World, 2, Phosphate Rock Resources (eds. A. J. G. Notholt, R. P. Sheldon and D. F. Davidson). Cambridge University Press, pp. 147–158.Google Scholar
  63. Lerman A., Mackenzie F. T. and Garrels R. M. (1975) Modeling of geochemical cycles: Phosphorus as an example. Geol. Soc. Am. Memoir 142, 205–218.Google Scholar
  64. Lini A., Bisping M. and Weissert H. (1991) Towards an Early Cretaceous carbon isotope stratigraphy. Terra Abstr. 3, 286.Google Scholar
  65. Lini A., Weissert H. and Erba E. (1990) A Valanginian carbon isotope event: document of low frequency changes in the Early Cretaceous carbon cycle. Int. Assoc. Sedimentol., 13th Int Congr, Nottingham, Book Poster Abstr., pp. 134.Google Scholar
  66. Lini A., Weissert H. and Erba E. (1992) The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova. (in press)Google Scholar
  67. Lovelock J. (1988) The Ages of Gaia. Bantam, New York, 252 p.Google Scholar
  68. May R. M. (1976) Simple mathematical models with very complicated dynamics. Nature 261, 459–467.Google Scholar
  69. May R. M. and Oster G. F. (1976) Bifurcations and dynamic complexity in simple ecological models. Am. Naturalist 110, 573–599.Google Scholar
  70. Notholt A. J. G., Sheldon R. P. and Davidson D. F. (eds) (1989) Phosphate Deposits of the World, 2, Phosphate Rock Resources. Cambridge University Press, 566 p.Google Scholar
  71. Oberhänsli H. and Hsü K. J. (1986) Paleocene–Eocene paleoceanography. In: Mesozoic and Cenozoic Oceans (ed. K. J. Hsü). Am. Geophys. Union Geodyn. Ser. 15, 85–100.Google Scholar
  72. Ouwehand P. J. (1987) Die Garschella-Formation (Aptian-Cenomanian) der Churfirsten-Alvier Region (Ostschweiz). Mitt. Geol. Inst. ETH Univ. Zürich NF 275, 296 p.Google Scholar
  73. Pecora W. T., Hearn B. C. and Milton C. (1962) Origin of spherulitic phosphate nodules in basal Colorado Shale, Bearpaw Mountains, Montana. Geol. Surv. Res. Repts., pp. B30 - B35.Google Scholar
  74. Pedersen T. F. and Calvert S. E. (1990) Anoxia versus productivity: what controls the formation of organic carbon-rich sediments and sedimentary rocks? Am. Assoc. Petrol. Geol. Bull. 74, 454–466.Google Scholar
  75. Pringle M. S. (1991) Rolling thunder of the Early Cretaceous: Plateau basalts, EMI from the lower mantle, and the origin of the DUPAL anomaly. EOS, Trans. Am. Geophys. Union Suppl. 72/17, 300.Google Scholar
  76. Rampino M. R. and Stothers R. B. (1988) Flood basalt volcanism during the past 250 million years. Science 241, 663–668.Google Scholar
  77. Raup D. M. and Sepkoski J. J. Jr. (1986) Periodic extinction of families and genera. Science 231, 833–836.Google Scholar
  78. Redfield A. C., Ketchum B. H. and Richard F. A. (1963) The influence of organisms on the composition of seawater. In: The Sea (ed. M. N. Hill ). Wiley and Sons, New York, Vol. 2, pp. 26–77.Google Scholar
  79. Reimers C. E., Kastner M. and Garrison R. E. (1990) The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. In: Phosphate Deposits of the World, 3, Neogene to Modern Phosphorites (eds. W. C. Burnett and S. R. Riggs ). Cambridge University Press, pp. 300–324.Google Scholar
  80. Renard M. (1986) Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Mar. Micropaleontol. 10, 117–164.Google Scholar
  81. Riggs S. R. (1987) Model of Tertiary phosphorites on the world’s continental margins. In: Marine Minerals (eds. Telecki P. G. et al.). Kluwer Academic Publishers, Dordrecht, pp. 99–118.Google Scholar
  82. Riggs S. R., Snyder S. W., Snyder S. W. and Hine A. C. (1990) Stratigraphic framework for cyclical deposition of Miocene sediments in the Carolina phosphogenic province. In: Phosphate Deposits of the World, 3, Neogene to Modern Phosphorites (eds. W. C. Burnett and S. R. Riggs ). Cambridge University Press, pp. 381–395.Google Scholar
  83. Rodriguez S. E. (1989) Phosphorite deposits of Venezuela. In: Notholt A. J. G., Sheldon R. P. and Davidson D. F. (eds) Phosphate Deposits of the World, 2, Phosphate Rock Resources. Cambridge University Press, pp. 137–146.Google Scholar
  84. Schianger S. O. and Jenkyns H. C. (1976) Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnbouw. 55, 179–184.Google Scholar
  85. Schlanger S. O., Jenkyns H. C. and Premoli-Silva I. (1981) Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Planet. Sci. Lett. 52, 435–449.Google Scholar
  86. Scholle P. A. and Arthur M. A. (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Am. Assoc. Petrol. Geol. Bull. 64, 67–87.Google Scholar
  87. Shackleton N. J. (1987) The carbon isotope record of the Cenozoic: History of organic burial and of oxygen in the ocean and atmosphere. In: Brooks J. and Fleet A. J. (eds), Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ. 26, 423–434.Google Scholar
  88. Shackleton N. J., Hall M. A., Boersma A. (1984) Oxygen and carbon isotope data from Leg 74 foraminifers. In: Mit. Repts. DSDP (eds. T. C. Moore, P. D. Rabinowitz, et al. 74, 599–612..Google Scholar
  89. Sheldon R. P. (1969) World phosphate resources. Min. Congr. J. (Febr 1969 )Google Scholar
  90. Sheldon R. P. (1980) Episodicity of phosphate deposition and deep ocean circulation–a hypothesis. In: Marine Phosphorites–Geochemistry, Occurrence, Genesis (ed. Y. K. Bentor). Soc. Econ. Paleontol Mineral. Spec. Publ. 29, 239–247.Google Scholar
  91. Sheldon R. P. (1982) Phosphate rock. Sci. Ani. 246/6, 45–51.Google Scholar
  92. Sheridan R. E. (1987) Pulsation tectonics as the control of long-term stratigraphie cycles. Paleoceanography 2/2, 97–118.Google Scholar
  93. Sladen C. P. (1983) Trends in Early Cretaceous clay mineralogy in NW Europe. Zitteliana 10, 349–357.Google Scholar
  94. Sliter W. V. (1990) Biochronology and biologic characterization of Aptian to Turonian organic-rich sequences. Soc. Econom. Mineral., Res. Confer. “Cretaceous Resources, Events, and Rhythms”, August 20–24, 1990, Denver, Colorado, Abstr. Vol.Google Scholar
  95. Stein R. (1991) Accumulation of Organic Carbon in Marine Sediments. Lecture Notes Earth Sci 34, 217 p.Google Scholar
  96. Stein R., Rullkötter J. and Welte D. H. (1986) Accumulation of organic-carbon-rich sediments in the late Jurassic and Cretaceous Atlantic Ocean–A synthesis. Chem. Geol. 56, 1–32.Google Scholar
  97. Stumm W. (1973) The acceleration of the hydrochemical cycling of phosphorus. Water Res. 7, 131–144.Google Scholar
  98. Summerhayes C. P. (1987) Organic-rich Cretaceous sediments from the North Atlantic. In: ’ Marine Petroleum Source Rocks (eds. J. Brooks and A. J. Fleet) Geol. Soc. Spec. Publ. 26, 301–316.Google Scholar
  99. Vakhrameev V. A. (1987) Cretaceous paleogeography of the U.S.S.R. Palaeogeogr. Palaeoclimatol. Palaeoecol. 59, 57–67.Google Scholar
  100. Varsentov I. M., Sakharove B. A., Rateev M. A. and Choporov D. Y. (1981) Geochemical history of post-Jurassic sedimentation in the Central Northwestern Pacific, northern Hess Rise, DSDP Site 464. In: Mit. Repts. DSDP (eds. J. Thiede, T. L. Vallier. et al.). 62, 805–832.Google Scholar
  101. Vincent E. and Berger W. H. (1985) Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis. In: The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present (eds. E. T. Sundquist and W. S. Broecker). Am. Geophys. Union Geophys. Monogr. 32, 455–468.Google Scholar
  102. Volk T. (1987) Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779.Google Scholar
  103. Weissert H. (1981) The environment of deposition of black shales in the Early Cretaceous: An ongoing controversy. In: The Deep Sea Drilling Project: A Decade of Progress. (eds. J. E. Warme, R. G. Douglas and E. L. Winterer). Soc. Econ. Paleontol. Mineral. Spec. Publ. 32, 547–560.Google Scholar
  104. Weissert H. (1989) C-isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early Cretaceous. Surveys Geophys. 10, 1–61.Google Scholar
  105. Weissert H. (1990) Siliciclastics in the Early Cretaceous Tethys and North Atlantic Oceans: Documents of periodic greenhouse climate conditions. Mem. Soc. Geol. Ital. 44, 59–69.Google Scholar
  106. Weissert H. and Bréhéret J. G. (1991) A carbonate carbon-isotope record from Aptian-Albian sediments of the Vocontian trough (SE France). Bull. Soc. Géol France 162, 1133–1140.Google Scholar
  107. Weissert H. and Channel J. E. T. (1989) Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary: An indicator of decelerated global carbon cycling? Paleoceanography 4, 483–494.Google Scholar
  108. Weissert H. and Lini A. (1991) Ice age interludes during the time of Cretaceous greenhouse climate? In: Controversies in Modern Geology (eds. D. Müller, J. A. McKenzie and H. Weissert ). Academic Press, London, pp. 173–191.Google Scholar
  109. Wilgus C. K., Hastings B. S., Posamentier H., Van Wagoner J., Ross C. A. and Kendall C. G. (eds) (1988) Sea-Level Changes: An Integrated Approach. Soc. Econ. Paleontol. Mineral. Spec. Publ. 42, 407 p.Google Scholar
  110. Woodruff F. and Savin S. M. (1985) δ13C values of Miocene Pacific benthic foraminifera: Correlations with sealevel and biological productivity. Geology 13, 119–122.Google Scholar
  111. Wyssling G. W. (1986) Der frühkretazische helvetische Schelf in Vorarlberg und im Allgäu–Stratigraphie, Sedimentologie und Paläogeographie. Jb. Geol. Bundesanst. 129,, 161–265.Google Scholar
  112. Yeo G. M. (1990) The Blow River phosphorite, northern Yukon (Canada): implications for the origin of Mesozoic marine phosphorites. Int. Assoc. Sedimentol., 13th Int. Congr., Nottingham, Book Paper Abstr., pp 617.Google Scholar
  113. Zimmerle W. (1982) Die Phosphorite des norddeutschen Apt und Alb. Geol. Jb. A65, 159–244.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Karl B. Föllmi
    • 1
  • Helmut Weissert
    • 1
  • Andrea Lini
    • 1
  1. 1.Geological InstituteETH CenterZürichSwitzerland

Personalised recommendations