Organic Matter Oxidation in Marine Sediments

  • Donald E. Canfield
Part of the NATO ASI Series book series (volume 4)

Abstract

The diagenesis and preservation of organic matter in marine sediments has received considerable attention in the past several years. Studies have quantified rates of organic carbon oxidation in sediments and how these rates vary among sedimentary environments, representing a range in sedimentation rates, levels of bottom water oxygen (for example, Canfield, 1989b; Emerson, 1985), and other factors. Also explored has been the relative importance of various oxidants (e.g. O2, NO3 , etc.) in total carbon oxidation (see reviews by Henrichs and Reeburgh, 1987; Jørgensen, 1983; Reeburgh, 1983; Smith and Hinga, 1983).

Keywords

Methane Fermentation Manganese Respiration Sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller R. C. (1990) Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. R. Soc. Lond. A 331, 51–68.Google Scholar
  2. Aller R. C. and Mackin J. E. (1984) Preservation of reactive organic matter in marine sediments. Earth Planet. Sci. Lett. 70, 260–266.Google Scholar
  3. Alperin M. J. (1988) The carbon cycle in an anoxic marine sediment: concentrations, rates, isotope ratios, and diagenetic models. Ph.D. Diss., Univ. Alaska, Fairbanks, 241 p.Google Scholar
  4. Balzer W., Pollenhne F. and Erlenkeuser H. (1986). Cycling of organic carbon in a coastal marine system. In: Sediments and water Interactions (ed. P. G. Sly ). Springer-Verlag, New York, pp. 325.Google Scholar
  5. Banat I. M. and Nedwell D. B. (1984) Inhibition of sulfate reduction in anoxic marine sediment by group VI anions. Estuar. Shelf Res. 18, 361–366.Google Scholar
  6. Bender M., Jahnke R., Weiss R., Martin W., Heggie D. T., Orchardo J. and Sowers T. (1989) Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta 53, 685–697Google Scholar
  7. Bender M. L. and Heggie D. T. (1984) Fate of organic carbon reaching the deep sea floor: a status report. Geochim. Cosmochim. Acta 48, 977–986.Google Scholar
  8. Berelson W. M., Hammond D. E. and Johnson K. S. (1987) Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins. Geochim. Cosmochim. Acta 51, 1345–1364.Google Scholar
  9. Berger W. H., Fischer K., Lai C. and Wu G. (1987) Ocean productivity and organic carbon flux, Part I. overview and maps of primary production and export production. SIO Reference Series 87–30, 67 p.Google Scholar
  10. Berner R. A. (1964) An idealized model of dissolved sulfate distribution in recent sediments. Geochim. Cosmochim. Acta 28, 1497–1503.Google Scholar
  11. Berner R. A. (1978) Sulfate reduction and the rate of deposition of marine sediments. Amer. Jour. Sci. 37, 492–498.Google Scholar
  12. Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princiton Univ. Press, Princeton, N. J., 241 p.Google Scholar
  13. Berner R. A. and Canfield D. E. (1989) A new model for atmospheric oxygen over Phanerozoic time. Amer. Jour. Sci. 289, 333–361.Google Scholar
  14. Brons H. J. and Zehnder A. J. B. (1990) Aerobic nitrate and nitrite reduction in continuous cultures of Eschericia coli M. Arch. Microbiol. 153, 531–536.Google Scholar
  15. Broomfield S. M. (1954) Reduction of ferric compounds by soil bacteria. J. Gen. Microbiol. 10, 1–6.Google Scholar
  16. Burdige D. J. and Nealson K. H. (1986) Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol. J. 4, 361–387.Google Scholar
  17. Calvert S. E. (1987) Oceanographic controls on the accumulation of organic matter in marine sediments. In: Marine Petroleum Source Rocks (eds. J. Brooks and A. L. Fleet). vol. 26, Geological Society Special Publication, pp. 137–151.Google Scholar
  18. Calvert S. E. and Pedersen T. F. (1992) Organic carbon accumulation and preservation in marine sediments: how important is anoxia. In: Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (eds. J. K. Whelan and J. W. Farrington). Columbia University Press, New York. (in press)Google Scholar
  19. Canfield D. E. and Green W. J. (1985) The cycling of nutrients in a closed-basin antarctic lake: Lake Vanda. Biogeochem. 1, 233–256.Google Scholar
  20. Canfield D. E., Raiswell R., Westrich J. T., Reaves C. M. and Berner R. A. (1986) The use of chromium reduction in the analysis of reduced sulfur in sediments and shales. Chem. Geol. 54, 149–155.Google Scholar
  21. Canfield D. E. (1989a) Reactive iron in marine sediments. Geochim. Cosmochim. Acta. 53, 619–632.Google Scholar
  22. Canfield D. E. (1989b) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research 36, 121–138.Google Scholar
  23. Canfield D. E. (1991) Sulfate reduction in deep-sea sediments. Amer. Jour. Sci. 291, 177–188.Google Scholar
  24. Canfield D. E. and Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251, 1471–1473.Google Scholar
  25. Christensen J. P. and Rowe GT (1984) Nitrification and oxygen consumption in northwest Atlantic deep-sea sediments. Jour. Marine Res. 42, 1099–1116.Google Scholar
  26. Christensen J. P., Murray J. W., Devol A. H. and Codispoti L. A. (1987) Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochemical Cycles 1, 97–116.Google Scholar
  27. Claypool G. E. and Kaplan I. R. (1974) The origin and distribution of methane in marine sediments. In: Natural Gases in Marine Sediments (ed. I. R. Kaplan ). Plenum, New York, pp. 99–139.Google Scholar
  28. Claypool G. E. and Threlkeld C. N. (1984) Anoxic diagenesis and methane generation in sediments of the Blake Outer Ridge. In: Initial Reports of The Deep-Sea Drilling Project (eds. R. E. Sheridan, F. M. Gralstein, et al.). vol. 76, U.S. Govt. Printing Office, Washington D.C., pp. 391–402.Google Scholar
  29. Crill P. M. and Martens C. S. (1986) Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochim. Cosmochim. Acta 50, 2089–2097.Google Scholar
  30. DeMaison G. L., Moore G. T. (1980) Anoxic marine environments and oil source bed genesis. AAPG Bull. 64, 1179–1209.Google Scholar
  31. Devol A. H. (1978) Bacterial oxygen uptake kinetics as related to biological process in oxygen deficient zones of the oceans. Deep-Sea Res. 25, 137–146.Google Scholar
  32. Devol A. H. (1983) Methane oxidation rates in the anaerobic sediments of Saanich Inlet. Limnol. Oceanogr. 28, 738–742.Google Scholar
  33. Devol A. H. (1991) Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349, 319–321.Google Scholar
  34. Devol A. H. and Ahmed S. I. (1981) Are high rates of sulfate reduction associated with anaerobic oxidation of methane? Nature 291, 407–408.Google Scholar
  35. Emerson S. (1985) Organic carbon preservation in marine sediments. In: The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present (eds. E. T. Sundquist and W. S. Broecker ). American Geophysical Union, Washington D.C., pp. 78–87.Google Scholar
  36. Emerson S. and Hedges J. I. (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3, 621–634.Google Scholar
  37. Emery K. O. and Hoggan D. (1958) Gases in marine sediments. AAPG Bull. 42, 2174.Google Scholar
  38. Foree E. G. and McCarty P. L. (1970) Anaerobic decomposition of algae. Environ. Sci. Tech. 4, 842–849.Google Scholar
  39. Fossing H. (1990) Sulfate reduction in shelf sediments in the upwelling region off Central Peru. Continental Shelf Res. 10, 355–367.Google Scholar
  40. Froelich P. N., Klinkhammer G. P., Bender M. L., Luedtke N. A., Heath G. R., Cullen D., Dauphin P., Hammond D., Hartman B. and Maynard V. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090.Google Scholar
  41. Gersberg R., Krohn K., Peek N. and Goldman C. R. (1976) Denitrification studies with 13N-labeled nitrate. Science 192, 1229–1231.Google Scholar
  42. Hart L. T., Larson P. D. and McCleskey C. S. (1965) Denitrification by Corynebacterium nephridii. J. Bacteriol. 89, 1104–1108.Google Scholar
  43. Heggie D., Maris C., Hudson A., Dymond J., Beach R., Cullen J. (1987) Organic carbon oxidation and preservation in NW Atlantic continental margin sediments. In: Geology and Geochemistry of Abyssal Plains (eds. P. P. E. Weaver and J. Thomson). vol. 31, Geological Society Special Publication, pp. 215–236.Google Scholar
  44. Henrichs S. M. and Reeburgh W. S. (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237.Google Scholar
  45. Holland H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley, New York.Google Scholar
  46. Howarth R. W. (1979) Pyrite: its rapid formation in a salt marsh and its importance to ecosystem metabolism. Science 203, 49–51.Google Scholar
  47. Howarth R. W. and Jorgensen B. B. (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short term 35S-SO4 2- reduction measurements. Geochim. Cosmochim. Acta 48, 1807–1818.Google Scholar
  48. Iversen N. and Jorgensen B. B. (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30, 944–955.Google Scholar
  49. Jahnke R. A. (1990) Early diagenesis and recycling of biogenic debris at the seafloor, Santa Monica Basin, California. Jour. Mar. Res. 48, 413–436.Google Scholar
  50. Jahnke R. A., Emerson S. R. and Murray J. M. (1982) A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. Limnol. Oceanogr. 27, 610–623.Google Scholar
  51. Jahnke RA, Reimers CE, Craven DB (1990) Intensification of recycling of organic matter at the sea floor near ocean margins. Nature 348, 50–54.Google Scholar
  52. Jones J. G., Gardner S. and Simon B. M. (1983) Bacterial reduction of ferric iron in a stratified eutrophic lake. J. Gen. Microbiol. 129, 131–139.Google Scholar
  53. Jorgensen B. B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 5, 814–832.Google Scholar
  54. Jorgensen B. B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I Measurement with radiotracer techniques. Geomicrobiol. J. 1, 11–27.Google Scholar
  55. Jorgensen B. B. (1982) Mineralization of organic matter in the sea bed-the role of sulfate reduction. Nature 296, 643–645.Google Scholar
  56. Jorgensen B. B. (1983) Processes at the sediment-water interface. In: The Major Biogeochemical Cycles and their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, Wiley, New York, pp. 477–509.Google Scholar
  57. Jogensen B. B. and Sorensen J. (1985) Seasonal cycles of O2, NO3 - and SO4 2- reduction in estuarine sediments: the significance of an NO3“ reduction maximum in the spring. Mar. Ecol Prog. Ser. 24, 65–74.Google Scholar
  58. Jorgensen B. B. (1989) Sulfate reduction in marine sediments from the Baltic Sea-North Sea transition. Ophelia 31, 1–15.Google Scholar
  59. Jorgensen B. B. and Revsbech N. P. (1989) Oxygen uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the Baltic Sea-North Sea transition. Ophelia 31, 29–49.Google Scholar
  60. Jorgensen B. B., Bang M. and Blackburn T. H. (1990) Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Mar. Ecol. Prog. Ser. 59, 39–54.Google Scholar
  61. Jorgensen B. B. and Bak F. (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Envir. Microbiol. 57, 847–856.Google Scholar
  62. Koike I. and Hattori A. (1978) Denitrification and ammonia formation in anaerobic coastal sediments. Appl. Environ. Microbiol. 35, 278–282.Google Scholar
  63. Koop K., Boynton W. R., Wulff F. and Carmen R. (1990) Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea. Mar. Ecol Prog. Ser. 63, 65–77.Google Scholar
  64. Kristensen E. and Blackburn T. H. (1987). The fate of carbon and nitrogen in experimental marine systems: influence of bioturbation and anoxia. Jour. Marine Res. 45, 231–257.Google Scholar
  65. Kuivila K. M., Murray J. W. and Devol A. H. (1990) Methane production in the sulfate-depleted sediments of two marine basins. Geochim. Cosmochim. Acta 54, 403–411.Google Scholar
  66. Kump L. R. and Garrels R. M. (1986) Modeling atmospheric 02 in the global sedimentary redox cycle. Amer. Jour. Sci. 286, 337–360.Google Scholar
  67. Lin S. and Morse J. W. (1991) Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. Amer. Jour. Sci. 291, 55–89.Google Scholar
  68. Lord C. J., III (1980) The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph.D. diss., Univ. Delaware, Newark, 177 p.Google Scholar
  69. Lovley D. R. and Klug M. J. (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45, 187–192.Google Scholar
  70. Lovley D. R. and Phillips E. J. P. (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomic River. Appl. Environ. Microbiol. 52, 751–757.Google Scholar
  71. Lovley D. R. and Phillips E. J. P. (1987) Competitive mechanisms for Inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53, 2636–2641.Google Scholar
  72. Lovley D. R. and Phillips E. J. P. (1988a) Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. J. 6, 145–155.Google Scholar
  73. Lovley D. R. and Phillips E. J. P. (1988b) Novel mode of microbial metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 54, 1472–1480.Google Scholar
  74. Mackin J. E. and Swider K. T. (1989) Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. Jour. Mar. Res. 47, 681–716.Google Scholar
  75. Martens C. S. and Berner R. A. (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185, 1167–1169.Google Scholar
  76. Martens C. S. and Berner R. A. (1977) Interstitial water chemistry of anoxic Long Island Sound sediments 1. Dissolved gases. Limnol. Oceanogr. 22, 10–25.Google Scholar
  77. Martens C. S. and Val Klump J. (1984) Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta 48, 1987–2004.Google Scholar
  78. Martin J. H., Knauer G. A., Karl D. M. and Broenkow W. W. (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285.Google Scholar
  79. Meyers C. R. and Nealson K. H. (1988) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim. Cosmochim. Acta 52, 2727–2732.Google Scholar
  80. Müller P. J. and Suess E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep-Sea Res. 26A, 1347–1362.Google Scholar
  81. Müller P. J. and Mangini A. (1980) Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230Th and 231Pa. Earth. Planet. Sci. Lett. 51: 94–114.Google Scholar
  82. Murray J. W. and Grundmanis V. (1980) Oxygen consumption in pelagic marine sediments. Science 209, 1527–1529.Google Scholar
  83. Murray J. W., Spell B. and Paul B. (1983) The contrasting geochemistry of manganese and chromium in the eastern tropical Pacific Ocean. In: Trace Metals in Sea Water (eds. C. S. Wong, E. Boyle, et al.) Plenum Press, New York, pp. 643–669.Google Scholar
  84. Murray J. W. and Kuivila K. M. (1990) Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res. 37, 59–80.Google Scholar
  85. Oremland R. S. and Taylor B. F. (1978) Sulfate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 42, 209–214.Google Scholar
  86. Oren A. and Blackburn T. H. (1979) Estimation of sediment denitrification rates at in situ nitrate concentrations. Appl. Environ. Microbiol. 37, 174–176.Google Scholar
  87. Otsuki A. and Hinga T. (1972a) Production of dissolved organic matter from dead alga cells. II Anaerobic microbial decomposition. Limnol. Oceanogr. 17, 258–264.Google Scholar
  88. Otsuki A. and Hinga T. (1972b) Production of dissolved organic matter from dead green alga cells I. Aerobic microbial decomposition. Limnol. Oceanogr. 17, 248–257.Google Scholar
  89. Pamatmat M. M. and Banse K. (1969) Oxygen consumption by the seabed. II. In situ measurements up to a depth of 180 m. Limnol. Oceanogr. 14, 250–259.Google Scholar
  90. Payne W. J. (1981) The status of nitric oxide and nitrous oxide as intermediates in denitrification. In: Denitrification, Nitrification, and atmospheric nitrous oxide (ed. C. C. Delwiche ). John Wiley and Sons, New York, pp. 85–103.Google Scholar
  91. Pederson T. F. and Calvert S. E. (1990) Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks. AAPG. 74, 454–466.Google Scholar
  92. Postma D. (1985) Concentration of Mn and separation from Fe in sediments. I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim. Cosmochim. Acta 49, 1023–1033.Google Scholar
  93. Pratt L. M. (1984) Influence of paleoenvironmental factors on preservation of organic matter in Middle Cretaceous Greenhorn Formation, Pueblo, Co. AAPG Bull. 68, 1146–1159.Google Scholar
  94. Pyzik A. J. and Sommer S. E. (1981) Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochim. Cosmochim. Acta 45, 687–698.Google Scholar
  95. Reeburgh W. S. (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28, 337–344.Google Scholar
  96. Reeburgh W. S. (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 47, 345–352.Google Scholar
  97. Reeburgh W. S. (1983) Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci. 11, 269–298.Google Scholar
  98. Reimers C. E. and Suess E. (1983) The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean. Mar. Chem. 13, 141–168.Google Scholar
  99. Reimers C. E., Fischer K. M., Merewether R., Smith K. L. and Jahnke R. A. (1986) Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320, 741–744.Google Scholar
  100. Reimers C. E., Kalhom E., Emerson S. and Nealson K. H. (1984) Oxygen consumption rates in pelagic sediments measured with a microelectrode. Geochim. Cosmochim. Acta 48, 903–910.Google Scholar
  101. Revsbech N. P., Sorensen J., Blackburn T. H. and Lomholt J. P. (1980) Distribution of oxygen in marine sediments measured with a microelectrode. Limnol. Oceanogr. 25, 403–411.Google Scholar
  102. Richards F. A., Cline J. D., Broenkow W. W. and Atkinson L. P. (1965) Some consequences of the decomposition of organic matter in Lake Nitinat, and anoxic Fjord. Limnol. Oceanogr. 10, R185 - R200.Google Scholar
  103. Robertson L. A. and Kuenen J. G. (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139, 351–354.Google Scholar
  104. Robertson L. A., Cornelisse R., De Vos P., Hadioetomo R. and Kuenen J. G. (1989) Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek 56, 289–299.Google Scholar
  105. Seitzinger S. P. (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724.Google Scholar
  106. Seitzinger S. P., Nixon S. W. and Pilson M. E. Q. (1984) Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol. Oceanogr. 29, 73–83.Google Scholar
  107. Smith K. L. Jr. and Hinga K. R. (1983) Sediment community respiration in the deep sea. In: The Sea (ed. G. T. Rowe). vol 8. Wiley Interscience, New York, pp. 331–379.Google Scholar
  108. Smith K. L. Jr., Carlucci A. F., Jahnke R. A. and Craven D. B. (1987) Organic carbon mineralization in the Santa Catalina Basin: benthic boundary layer metabolism. Deep-Sea Res. 34, 185–211.Google Scholar
  109. Smith K. L. Jr., Baldwin R. J. and Edelman J. L. (1989) Supply and demand for organic matter by sediment communities on two central North Pacific seamounts. Deep-Sea Res. 36, 1917–1932.Google Scholar
  110. Sorensen J. (1978) Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Appl. Environ. Microbiol. 36, 139–143.Google Scholar
  111. Sorensen J. (1982) Reduction of ferric iron in anaerobic. marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43, 319–324.Google Scholar
  112. Sorensen J., Jorgensen K. S., Colley S., Hydes D. J., Thomson J. and Wilson T. R. S. (1984) Depth localization of denitrification in a deep-sea sediment from the Madeira Abyssal Plain. Limnol. Oceanogr. 32, 758–762.Google Scholar
  113. Sorensen J., Rasmussen L. K. and Koike I. (1987) Micromolar sulfide concentrations alleviate blockage of nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Can. J. Microbiol. 33, 1001–1005.Google Scholar
  114. Sorensen J., Tiedje J. M. and Firestone R. B. (1980) Inhibition by sulfide of nitric oxide and nitrous oxide reduction by denitrifying Pseudomonas flourescens. Appl. Environ. Microbiol. 39, 105–108.Google Scholar
  115. Sorokin Y. I. (1962) Experimental investigation of bacterial sulfate reduction in the Black Sea using 35S. Mikrobiologiya 31, 402–410.Google Scholar
  116. Stein R. (1986) Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deep-water. SCOPE/UNEP Sonderband 60, 55–70.Google Scholar
  117. Stumm W. and Morgan J. J. (1970) Aquatic Chemistry. Wiley Interscience, New York, 780 p.Google Scholar
  118. Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288, 260–263.Google Scholar
  119. Thode-Andersen S. and Jorgensen B. B. (1989) Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and So in coastal marine sediments. Limnol. Oceanogr. 34, 793–806.Google Scholar
  120. Toth D. J. and Lerman A. (1977) Organic matter reactivity and sedimentation rates in the ocean. Amer. Jour. Sci. 277, 265–285.Google Scholar
  121. Vuchev V. T. (1974) Black Sea studies in Bulgaria-a brief survey. In: The Black Sea-Geology, Chemistry, and Biology (eds. E. T. Degens and D. A. Ross). vol. 20, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 90–96.Google Scholar
  122. Walsh J., Rowe G. T., Iverson R. L. and McRoy C. P. (1981) Biological export of shelf carbon: a neglected sink of the global CO2 cycle. Nature 291, 196–201.Google Scholar
  123. Westrich J. T. (1983) The consequences and controls of bacterial sulfate reduction in marine sediments. Ph.D. diss., Yale University, New Haven, Connecticut, 530 p.Google Scholar
  124. Westrich J. T. and Berner R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29, 236–249.Google Scholar
  125. Zhabina N. N. and Volkov I. I. (1978) A method of determination of various sulfur compounds in sea sediments and rocks. In: Environmental Biogeochemistry; Methods, Metals and Assessment (ed. W. E. Krumbein). vol 3, Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 735–745.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Donald E. Canfield
    • 1
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations