Enzymes from Extreme Thermophilic Bacteria as Special Catalysts: Studies on a β-Galactosidase from Sulfolobus solfataricus

  • M. Rossi
  • M. V. Cubellis
  • R. Rella
  • F. Pisani
  • M. Moracci
  • R. Nucci
  • C. Vaccaro
Conference paper

Abstract

Biotechnological applications of proteins and enzymes are often hampered by their low stability to heat, pH, organic solvents, and proteolysis. With the aid of protein engineering, however, many attempts are being made to improve the operational stability of current commercial enzymes, and, in a more general sense, to establish guidelines for improving the thermostability of proteins and enzymes (Mozhaev et al. 1988).

Keywords

Hydrolysis Codon Cysteine Serine Proline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartolucci S, Rella R, Guagliardi AM, Raia CA, Gambacorta A, De Rosa M, Rossi M (1987) Malic enzyme from archaebacterium Sulfolobus solfataricus. J Biol Chem 262: 7725–7731PubMedGoogle Scholar
  2. Bigelow CC (1967) On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol 16: 187–211PubMedCrossRefGoogle Scholar
  3. Brock TD (1985) Life at high temperatures. Science 230: 132–138PubMedCrossRefGoogle Scholar
  4. Buonocore V, Sgambati O, De Rosa M, Esposito E, Gambacorta A (1980) A constitutive ßGalactosidase from the extreme thermoacidophile archaebacterium Caldariella acidophila: properties of the enzyme in the free state and in immobilized whole cells. J Appl Biochem 2: 390–397Google Scholar
  5. Cowan DA, Daniel RM, Martin AM, Morgan HV (1984) Some properties of a ß-galactosidase from an extremely thermophilic bacterium. Biotechnol Bioeng 26: 1141–1145PubMedCrossRefGoogle Scholar
  6. Cubellis MV, Rozzo C, Marino G, Nitti G, Arnone MI, Sannia G (1989) Cloning and sequencing of gene coding for aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 186: 375–381PubMedCrossRefGoogle Scholar
  7. Cubellis MV, Rozzo C, Montecucchi P, Rossi M (1990) Isolation, sequencing and cloning in Escherichia coli of a new β-galactosidase archaebacterial gene. Gene (in press)Google Scholar
  8. Davies GE, Stark GR (1970) Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci USA 66: 651–656PubMedCrossRefGoogle Scholar
  9. De Rosa M, Gambacorta A, Bu’ Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86: 156–164PubMedGoogle Scholar
  10. De Rosa M, Gambacorta A, Nicolaus B, Buonocore V, Poerio E (1980) Immobilized bacterial cells containing a thermostable ß-galactosidase. Biotechnol Lett 2: 29–34CrossRefGoogle Scholar
  11. Fabry S, Lehmacher A, Bode W, Hensel R (1988) Expression of the glyceraldehyde-3-phosphate dehydrogenase gene from the extremely thermophilic archaebacterium Methanothermus fervidus in E. coli. FEBS Lett 237: 213–217PubMedCrossRefGoogle Scholar
  12. Fontana A (1988) Structure and stability of thermophilic enzymes. Biophys Chem 29: 181–183PubMedCrossRefGoogle Scholar
  13. Horinouchi S, Fukusumi S, Ohshima T, Beppu T (1988) Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Disctyoglomus thermophilum, and their nucleotide sequence with extremely low guanine-plus-cytonine contents. Eur J Biochem 176: 243–253PubMedCrossRefGoogle Scholar
  14. Kandier O (1984) Archaebacteria — biotechnological implications. Proc Third European Congr Biotechnology. Symp Futuristic Aspects of Biotechnology, München, vol IV, pp 551–560Google Scholar
  15. Mozhaev VV, Berezin IV, Mantinek K (1988) Structure-stability relationship in proteins: fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology. CRC Crit Rev Biochem 23: 235–281PubMedCrossRefGoogle Scholar
  16. Penke B, Ferenczi R, Kovacs K (1974) A new acid hydrolysis method for determining tryptophan in peptides and proteins. Anal Biochem 60: 45–50PubMedCrossRefGoogle Scholar
  17. Pisani FM, Relia R, Raia CA, Rozzo C, Nucci R, Gambacorta A, De Rosa M, Rossi M (1989) Thermostable ß-galactosidase from the archaebacterium Sulfolobus solfataricus. Eur J Biochem 187: 321–328CrossRefGoogle Scholar
  18. Relia R, Raia CA, Pensa M, Pisani FM, Gambacorta A, De Rosa M, Rossi M (1987) A novel archaebacterial NAD’ -dependent alcohol dehydrogenase. Eur J Biochem 167: 475–479CrossRefGoogle Scholar
  19. Rossi M, Relia R, Pensa M, Bartolucci S, De Rosa M, Gambacorta A, Raia CA, Dell’ Aversano Orabona N (1986) Structure and properties of a thermophilic and thermostable DNA polymerase isolated from Sulfolobus solfataricus. Syst Appl Microbiol 7: 337–341CrossRefGoogle Scholar
  20. Rossi M, Cubellis MV, Rozzo C, Moracci M, Relia R (1990) Cloning, sequencing and expression of a new ß-galactosidase from the extreme thermophilic Sulfolobus solfataricus. In: Jardetsky O, Nicolini C (eds) Protein engineering and structure. Plenum, New York (in press)Google Scholar
  21. Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles, vol 7. Wiley, New York, pp 337–341Google Scholar
  22. Ulrich JT, McFeters GA, Temple KC (1972) Induction and characterizaton of ß-galactosidase in an extreme thermophile. J Bacteriol 110: 691–698PubMedGoogle Scholar
  23. Wallenfels K, Weil R (1972) ß-Galactosidase. In: Boyer PD (ed) The enyzmes, 3rd edn, vol 7. Academic Press, New York, pp 617–663Google Scholar
  24. Woese CR (1982) Archaebacteria and cellular origin: an overview. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig C3: 1–17Google Scholar
  25. Woese CR, Wolfe RS (1985) Archaebacteria: the urkingdom. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic Press, New York, pp 561–564Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Rossi
    • 1
  • M. V. Cubellis
    • 1
  • R. Rella
    • 2
  • F. Pisani
    • 2
  • M. Moracci
    • 2
  • R. Nucci
    • 2
  • C. Vaccaro
    • 2
  1. 1.Dipartimento di Chimica Organica e BiologicaUniversità di NapoliNaplesItaly
  2. 2.Institute of Protein Biochemistry and EnzymologyC.N.R.NaplesItaly

Personalised recommendations