Multifractal Structure of Non-Newtonian Viscous Fingers

  • T. Nagatani
  • Y. Usami
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 52)


A real-space renormalization-group method has been developed to study the fractal and multifractal structures in diffusion limited aggregation [1–4]. In this article, we investigate the multifractal structure of the growth probability distribution in the viscous fingering of a non-Newtonian displaced fluid. The dependences of the α-f spectra of the growth probability distribution are shown on the parameter k describing the different non-Newtonian fluids.


Stable Fixed Point Growth Probability Diffusion Limited Aggregation Nonlinear Resistor Fluid Flow Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Nagatani, J. Phys. A20, L381(1987)MathSciNetADSGoogle Scholar
  2. T. Nagatani, Phys. Rev. A36, 5812(1987)ADSGoogle Scholar
  3. T. Nagatani, Phys. Rev. A38, 2632(1988).ADSGoogle Scholar
  4. 2.
    L. Pietronero, A. Erzan and C. Evertz, Phys. Rev. Lett. 61, 861 (1988)ADSCrossRefGoogle Scholar
  5. L. Pietronero, A. Erzan and C. Evertz, Physica A151, 207(1988)ADSGoogle Scholar
  6. 3.
    X. R. Wang, Y. Shapir and M. Rubinstein, Phys. Rev. A39, 5974 (1989)ADSGoogle Scholar
  7. X. R. Wang, Y. Shapir and M. Rubinstein, J. Phys. A22, L507(1989).ADSGoogle Scholar
  8. 4.
    J. Lee, P. Alstrom and H E Stanley, Phys. Rev. A39, 6545(1989).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • T. Nagatani
    • 1
  • Y. Usami
    • 2
  1. 1.College of EngineeringShizuoka UniversityHamamatsu 432Japan
  2. 2.Institute of PhysicsKanagawa UniversityRokkakubashi, Yokohama 221Japan

Personalised recommendations