Advertisement

Simple Models for Coalescence of Fluid Droplets

  • P. Meakin
Part of the Springer Proceedings in Physics book series (SPPHY, volume 52)

Abstract

A variety of models involving the coalescence of D dimensional hyper-spherical droplets in or on d dimensional substrates have been explored using computer simulations. In all cases, the simulation results can be understood in terms of simple scaling and/or statistical models. Consequently, exact but nonrigorous values for the exponents that describe the scaling behavior have been obtained as a function of D and d. These exponents are found to be universal (insensitive to model details) so that the results described here may be relevant to real systems that are not described in full detail by the models.

Keywords

Droplet Size Small Droplet Large Droplet Droplet Size Distribution Coalescence Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Beysens and C. M. Knobler, Phys. Rev. Lett. 57, 1433 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    J. L Viovy, D. Beysens and C. M. Knobler, Phys. Rev. A 37, 4965 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    D. Fritter, C. M. Knobler, D. Roux and D. Beysens, J. Stat. Phys.Google Scholar
  4. 4.
    B. Mason, “The Physics of Clouds”, Oxford University Press, London (1957).Google Scholar
  5. 5.
    B. Lewis and J. C. Anderson, “Nucleation and Growth of Thin Films”, Academic, New York (1987).Google Scholar
  6. 6.
    J. D. Gunton, M. San Miguel and P. S. Sahni in “Phase Transitions and Critical Phenomena”, C. Domb and J. L Lebowitz, eds., Academic, London (1983), Vol. 8.Google Scholar
  7. 7.
    E. Siggia, Phys. Rev. A 20, 595 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    R. J. Quinn and A. F. Sarofim, Fuel 65, 40 (1986).CrossRefGoogle Scholar
  9. 9.
    A. R. Kerstein, “Combustion Flame” (1989), to be published.Google Scholar
  10. 10.
    S. Kang, J. J. Helble, A. F. Sarofim and J. M. Beer in Proceedings of the Twenty-second International Symposium on Combustion, Pittsburgh 1988 (The Combustion Institute 1988), p. 101.Google Scholar
  11. 11.
    Gas Fluidization Technology, D. Geldart ed., Wiley, Chichester (1986).Google Scholar
  12. 12.
    J. R. Grace, Can. J. Chem. Engg. 64, 353 (1986).CrossRefGoogle Scholar
  13. 13.
    P. Meakin and F. Family, J. Phys. A 22, L225 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    F. Family and P. Meakin, Phys. Rev. 40, 3836 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York (1982).zbMATHGoogle Scholar
  16. 16.
    P. Meakin, unpublished.Google Scholar
  17. 17.
    T. Vicsek and F. Family, Phys. Rev. Lett. 52, 1669 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    R. Botet and R. Jullien, J. Phys. A 17, 2517 1984).Google Scholar
  19. 19.
    P. Meakin in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., Vol. 12, p. 335, Academic Press, New York (1988).Google Scholar
  20. 20.
    M. Kolb, Phys. Rev. Lett. 62, 1699 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    F. Family and P. Meakin, Phys. Rev. Lett. 62, 1700 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    T. Vicsek and F. Family in “Kinetics of Aggregation and Gelation”, F. Family and D. P. Landau, eds., North Holland, Amsterdam (1984), p. 111.Google Scholar
  23. 23.
    P. Meakin, T. Vicsek and F. Family, Phys. Rev. B 31, 564 (1985).Google Scholar
  24. 24.
    P. Meakin and H. E. Stanley, J. Phys. A 17, L173 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    M. von Smoluchowski, Z. Phys. 17, 585 (1916).Google Scholar
  26. 26.
    M. von Smoluchowski, 92, 129 (1917).Google Scholar
  27. 27.
    Z. Cheng, S. Redner, P. Meakin and F. Family, Phys. Rev. A (1989), to be published.Google Scholar
  28. 28.
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    C. Tang and P. Bak, Phys. Rev. Lett. 60, 2347 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    C. Tang and P. Bak, J. Stat. Phys. 51, 797 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    K. Kang and S. Redner, Phys. Rev. A 30, 2833 (1984).ADSCrossRefGoogle Scholar
  33. 33.
    K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    K. Kang and S. Redner, Phys. Rev. A 32, 435 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    D. Elderfield, J. Phys. A 20, L135 (1987).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    P. D. J. van Dongen, Phys. Rev. Lett. 63, 1281 (1989).ADSCrossRefGoogle Scholar
  37. 37.
    P. Meakin and M. H. Ernst, Phys. Rev. Lett. 60, 2503 (1988).ADSCrossRefGoogle Scholar
  38. 38.
    P. Meakin, Phys. Rev. A 40 2655 (1989).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • P. Meakin
    • 1
  1. 1.Central Research and Development DepartmentE.I. du Pont de Nemours and CompanyWilmingtonUSA

Personalised recommendations