Advertisement

Ordered Phases in Colloidal Suspensions of Tobacco Mosaic Virus

  • R. B. Meyer
Part of the Springer Proceedings in Physics book series (SPPHY, volume 52)

Abstract

Suspensions of Tobacco Mosaic Virus in water have a remarkable phase diagram exhibiting a number of ordered states. To some extent the ordering can be understood in terms of hard particle interactions, which makes the variety of ordered states all the more remarkable. This article discusses our current knowledge of the Tobacco Mosaic Virus system, some ideas about the types of order observed, and the possibilities for future research.

Keywords

Tobacco Mosaic Virus Nematic Phase Smectic Phase Smectic Layer Nematic Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.L.D. Caspar, Adv. Protein Chem. 18, 37 (1963).CrossRefGoogle Scholar
  2. [2]
    J.A.N. Zazodzinski, Phys. Rev. Lett. 56, 636 (1986).ADSCrossRefGoogle Scholar
  3. [3]
    E. Loh, Biopolymers 18, 2549 (1979)CrossRefGoogle Scholar
  4. E. Loh, Biopolymers 18, 2569 (1979).CrossRefGoogle Scholar
  5. [4]
    R.B. Scheele and M.A. Lauffer, Biochemistry 6, 3076 (1967).CrossRefGoogle Scholar
  6. [5]
    V.A. Parsegian and S.L. Brenner, Nature (London) 259, 632 (1976).ADSCrossRefGoogle Scholar
  7. [6]
    Samples were prepared by a procedure based on that of H. Boedtker and N.S. Simmons, J. Am. Chem. Soc. 80, 2550 (1958).CrossRefGoogle Scholar
  8. [7]
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).ADSCrossRefGoogle Scholar
  9. [8]
    J.P. Straley, Mol. Cryst. Liq. Cryst. 22, 333 (1973).CrossRefGoogle Scholar
  10. [9]
    J.P. Straley, Mol. Cryst. Liq. Cryst. 24, 7 (1973).CrossRefGoogle Scholar
  11. [10]
    Th. Odijk, Macromolecules 19, 2313 (1986).ADSCrossRefGoogle Scholar
  12. [11]
    A. Stroobants, H.N.W. Lekkerkerker, and Th. Odijk, Macromolecules 19, 2232 (1986).ADSCrossRefGoogle Scholar
  13. [12]
    M.A. Cotter, Phys. Rev. A. 10, 625 (1974).ADSCrossRefGoogle Scholar
  14. [13]
    G. Lasher, J. Chem. Phys. 53, 4141 (1970).ADSCrossRefGoogle Scholar
  15. [14]
    H.N.W. Lekkerkerker, Ph. Coulon, R. Van Der Haegen, and R. Deblieck, J. Chem. Phys. 80, 3427 (1984).ADSCrossRefGoogle Scholar
  16. [15]
    J.P. Straley, Phys. Rev. A. 8, 2181 (1973).ADSCrossRefGoogle Scholar
  17. [16]
    J. Herzfeld, A.E. Berger, and J.W. Wingate, Macromolecules 17, 1718 (1984).ADSCrossRefGoogle Scholar
  18. [17]
    S.D. Lee and R.B. Meyer, J. Chem. Phys. 84, 6 (1986).Google Scholar
  19. [18]
    S.D. Lee, J. Chem. Phys. 87, 8 (1987).Google Scholar
  20. [19]
    S.D. Lee, J. Chem. Phys. 89, 7036 (1988).ADSCrossRefGoogle Scholar
  21. [20]
    X. Wen and R.B. Meyer, Phys. Rev. Lett. 59, 1325 (1987).ADSCrossRefGoogle Scholar
  22. [21]
    M.P. Taylor, R. Hentschke, and J. Herzfeld, Phys. Rev. Lett. 62, 800 (1989).ADSCrossRefGoogle Scholar
  23. [22]
    R. Oldenbourg, X. Wen, R.B. Meyer, and D.L.D. Caspar, Phys. Rev. Lett. 61, 1851 (1988).ADSCrossRefGoogle Scholar
  24. [23]
    M. Deutsch, Phys. Rev. Lett. 64 697 (1990).ADSCrossRefGoogle Scholar
  25. [24]
    S.D. Lee, J. Chem. Phys. 87, 4972 (1987).ADSCrossRefGoogle Scholar
  26. [25]
    S. Fraden, G. Maret, D.L.D. Caspar, and R.B. Meyer, Phys. Rev. Lett. 63, 2068 (1989).ADSCrossRefGoogle Scholar
  27. [26]
    P. Photinos, C. Rosenblatt, T.M. Schuster, and A. Saupe, J. Chem. Phys. 87, 6740 (1987).ADSCrossRefGoogle Scholar
  28. [27]
    S. Fraden, to be published.Google Scholar
  29. [28]
    P. Photinos, and A. Saupe, Mol. Cryst. and Liq. Cryst. 123, 217 (1985).CrossRefGoogle Scholar
  30. [29]
    S. Fraden, private communication.Google Scholar
  31. [30]
    A. Stroobants, H.N.W. Lekkerkerker, and D. Frenkel, Phys. Rev. Lett. 57 1452 (1986)Google Scholar
  32. A. Stroobants, H.N.W. Lekkerkerker, and D. Frenkel, Phys. Rev. A. 36, 2929 (1987)ADSCrossRefGoogle Scholar
  33. D. Frenkel, H.N.W. Lekkerkerker, and A. Stroobants, Nature (London) 332, 822 (1988)ADSCrossRefGoogle Scholar
  34. D. Frenkel, J. Phys. Chem. 92, 3280 (1988).CrossRefGoogle Scholar
  35. [31]
    B.M. Mulder, Phys. Rev. A 35, 3095 (1987)ADSCrossRefGoogle Scholar
  36. A. Poniewierski and R. Holyst, Phys. Rev. Lett. 61, 2461 (1988)ADSCrossRefGoogle Scholar
  37. A.M. Samoza and P. Tarazona, Phys. Rev. Lett. 61, 2566 (1988).ADSCrossRefGoogle Scholar
  38. [32]
    G. Oster, J. Gen. Physiol. 33, 445 (1950)CrossRefGoogle Scholar
  39. U. Kreibig and C. Wetter, Z. Naturforsch, 35c, 750 (1980)Google Scholar
  40. S. Fraden, W.C. Phillips, and D.L.D. Caspar, Biophysical J. 37, 97a (1982)Google Scholar
  41. S. Fraden, A.J. Hurd, M. Cahoon, D.L.D. Caspar, and R.B. Meyer, J. Phys. (Paris), Colloq. C3, 46, C3–85 (1985).Google Scholar
  42. [33]
    X. Wen, R.B. Meyer, and D.L.D. Caspar, Phys. Rev. Lett. 63, 25 (1989)Google Scholar
  43. [34]
    X. Wen and R.B. Meyer, J. Phys. France 50, 3043 (1989).CrossRefGoogle Scholar
  44. [35]
    X. Ao and X. Wen, in preparation.Google Scholar
  45. [36]
    X. Wen, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. B. Meyer
    • 1
  1. 1.The Martin Fisher School of PhysicsBrandeis UniversityWalthamUSA

Personalised recommendations