Advertisement

Adhesion and Roughness of Biological Model Membranes

  • W. Helfrich
  • B. Klösgen
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 52)

Abstract

Several electrically neutral biological model membranes have been found to separate in plenty of water, adhering to each other only when under lateral tension. The large contact angles (≥ 40°) of induced adhesion suggest a submicroscopic roughness of the membranes which at zero tension absorbs at least 10 times as much area as do undulations. A model of cooperative local saddles has been proposed to explain the roughness. We review the situation, present an electron micrograph which possibly shows a pattern of saddles, argue that saddles may be destroyed by too much tension and then need a long time to reappear, and list other evidence for anomalous behavior of these membranes.

Keywords

Contact Angle Planar Phase Fluid Membrane Adhesion Energy Single Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Harbich, H.J. Deuling and W. Helfrich, J. Phys. France 38, 727 (1977).CrossRefGoogle Scholar
  2. 2.
    J.F. Faucon, M.D. Mitov, P. Méléard, J. Bivas and P. Bothorel, J. Phys. France 50, 2389 (1989); and references cited therein.CrossRefGoogle Scholar
  3. 3.
    W. Helfrich, Z. Naturforsch. 30C, 841 (1975).Google Scholar
  4. 4.
    F. Brochard, P.G. deGennes and P. Pfeuty, J. Phys. France 37, 1099 (1976).CrossRefGoogle Scholar
  5. 5.
    W. Helfrich and R.M. Servuss, Il Nuovo Cimento 3D, 137 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    S.T. Milner and S.A. Safran, Phys. Rev. A36, 4371 (1987).ADSGoogle Scholar
  7. 7.
    W. Helfrich, Z. Naturforsch 33A, 305 (1978).ADSGoogle Scholar
  8. 8.
    W. Helfrich, J. Phys. France 48, 285 (1987); and references cited therein.CrossRefGoogle Scholar
  9. 9.
    L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1960 (1985).CrossRefGoogle Scholar
  10. 10.
    F. David, Europhys. Lett. 6, 603 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    P.G. deGennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  12. 12.
    C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark and A.M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    G. Porte, J. Marignan, P. Bassereau and R. May, Europhys. Lett. 7, 713 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    E. Evans, American Chemical Society Fall National Meeting, Miami, Sept. 10–15 (1989); and to be published.Google Scholar
  15. 15.
    M. Kummrow and W. Helfrich, to be published.Google Scholar
  16. 16.
    S.A. Safran, D. Roux, M.E. Cates and D. Andelman, Phys. Rev. Lett. 57, 491 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    D. Roux, M.E. Cates, M. Olsson, R.C. Ball, F. Nallet and A.M. Bellocq, ITP-UCSB preprint (August 1989).Google Scholar
  18. 18.
    R. Servuss, W. Harbich and W. Helfrich, unpublished, quoted in Ref. 8.Google Scholar
  19. 19.
    R.M. Servuss and W. Helfrich, J. Phys. France 50, 809 (1989).CrossRefGoogle Scholar
  20. 20.
    W. Harbich and W. Helfrich, J. Phys. France, submitted.Google Scholar
  21. 21.
    R.M. Servuss and W. Helfrich, in “Physics of Complex and Super-molecular Fluids”, eds. S.A. Safran and N.A. Clark (Wiley, New York, 1987).Google Scholar
  22. 22.
    M. Mutz and W. Helfrich, to be published.Google Scholar
  23. 23.
    M. Mutz and W. Helfrich, Phys. Rev. Lett. 62, 2881 (1989).Google Scholar
  24. 24.
    W. Helfrich, Liq. Cryst., in press.Google Scholar
  25. 25.
    B. Klösgen and W. Helfrich, to be published.Google Scholar
  26. 26.
    W. Harbich and W. Helfrich, Chem. Phys. Lip. 36, 39 (1984).CrossRefGoogle Scholar
  27. 27.
    R. Kwok and E. Evans, Biophys. J. 35, 637 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    J. Marra and J. Israelachvili, Biochemistry 24, 4608 (1985).CrossRefGoogle Scholar
  29. 29.
    J. Mahanty and B.W. Ninham, Dispersion Forces (Academic Press, 1976).Google Scholar
  30. 30.
    R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56, 2541 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    W. Helfrich, in “Phase Transitions in Soft Matter” (Nato Advanced Study Institute), ed. T. Riste (Plenum Press, 1989).Google Scholar
  32. 32.
    J.N. Israelachvili, D.J. Mitchell and B.W. Ninham, J. Chem. Soc. Faraday Trans. II 72, 1525 (1976).CrossRefGoogle Scholar
  33. 33.
    E. Evans and M. Metcalfe, Biophys. J. 46, 423 (1984); and E. Evans, private communication.ADSCrossRefGoogle Scholar
  34. 34.
    G. Beblik, R.M. Servuss and W. Helfrich, J. Phys. France 46, 1773 (1985).CrossRefGoogle Scholar
  35. 35.
    M. Mutz and W. Helfrich, J. Phys. France, submitted.Google Scholar
  36. 36.
    R.M. Servuss, Chem. Phys. Lipids 50, 87 (1989).CrossRefGoogle Scholar
  37. 37.
    W. Helfrich and W. Harbich, in “Physics of Amphiphilic Layers”, eds. J. Meunier, D. Langevin and N. Boccara, Springer Proc. in Physics 21 (1987); and W. Harbich and W. Helfrich to be published.Google Scholar
  38. 38.
    A.J. Verkleij, Biochim. Biophys. Acta 779, 43 (1984); (review).Google Scholar
  39. 39.
    See, e.g., R.P. Rand, Ann. Rev. Biophys. Bioeng. 10, 277 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • W. Helfrich
    • 1
    • 2
  • B. Klösgen
    • 1
  1. 1.Fachbereich PhysikFreie Universität BerlinBerlin 33Germany
  2. 2.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations