Advertisement

On Saint-Venant’s Principle in Finite Anti-Plane Shear: An Energy Approach

  • C. O. Horgan
  • L. E. Payne

Abstract

Some time ago a version of Saint-Venant’s principle was formulated and established for finite elastostatics [1]. As was discussed in [1], the issues of concern in connection with Saint-Venant’s principle in the nonlinear theory of elasticity are considerably more involved then those arising in the linear theory. (For a survey of results on Saint-Venant’s principle, primarily for linear theories, see e.g. [2–5].) One difficulty is that the appropriate Saint-Venant solutions need to be carefully characterized (see e.g. [6–13] and the references cited therein). Secondly, in the absence of superposition, consideration of self-equilibrated end loads is no longer sufficient. Furthermore, instabilities may have to be taken into account. Also the decay rate for end effects, even if exponential, might depend on the overall loading as well as on geometry and material characteristics. Several of these issues have been considered in recent studies in the nonlinear elasticity context [1, 14–23] as well as in investigations of spatial decay of solutions of nonlinear elliptic partial differential equations [24–32].

Keywords

Simple Shear Decay Estimate Estimate Decay Rate Algebraic Inequality Wirtinger Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horgan, C. O., & Knowles, J. K., The effect of nonlinearity on a principle of Saint-Venant type. Journal of Elasticity 11, 271–291 (1981).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Horgan, C. O., & Knowles, J. K., Recent developments concerning Saint-Venant’s principle, Advances in Applied Mechanics, J. W. Hutchinson, ed., Vol. 23, pp. 179–269. Academic Press, New York, 1983.Google Scholar
  3. 3.
    Horgan, C. O., Recent developments concerning Saint-Venant’s principle: an update. Applied Mechanics Reviews 42 (1989) (in press).Google Scholar
  4. 4.
    Fichera, G., Il principio di Saint-Venant: Intuizione dell’ingegnere e rigore del matematico. Rend. di Mat. Serie VI 10, 1–24 (1977).MathSciNetMATHGoogle Scholar
  5. 5.
    Fichera, G., Remarks on Saint-Venant’s principle. Rend. di Mat. Serie VI 12, 181–200 (1979).MathSciNetADSMATHGoogle Scholar
  6. 6.
    Ericksen, J. L., On the formulation of St. Venant’s problem, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (R. J. Knops, ed.) Vol. I, pp. 158–186. Pitman, London, 1977.Google Scholar
  7. 7.
    Muncaster, R. G., Saint-Venant’s problem in nonlinear elasticity: a study of cross-sections, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (R. J. Knops, ed.), Vol. IV, pp. 17–75. Pitman, London, 1979.Google Scholar
  8. 8.
    Muncaster, R. G., Saint-Venant’s problem for slender prisms. Utilitas Math. 23, 75–101 (1983).MathSciNetMATHGoogle Scholar
  9. 9.
    Ericksen, J. L., Saint-Venant’s problem for elastic prisms, in Systems of Nonlinear Partial Differential Equations (J. M. Ball, ed.), pp. 87–93. D. Reidel, Dordrecht, 1983.Google Scholar
  10. 10.
    Ericksen, J. L., Problems for infinite elastic prisms, in Systems of Nonlinear Partial Differential Equations (J. M. Ball, ed.), pp. 80–86. D. Reidel, Dordrecht, 1983.Google Scholar
  11. 11.
    Kinderlehrer, D., A relation between semi-inverse and Saint-Venant solutions for prisms. SIAM J. Math. Anal. 17, 626–640 (1986).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kinderlehrer, D., Remarks about Saint-Venant solutions in finite elasticity, in Nonlinear Functional Analysis and its Applications: Proceedings of Symposia in Pure Mathematics (F. E. Browder, ed.), Vol. 45, Part 2, pp. 37–50. American Mathematical Society, Providence, Rhode Island, 1986.Google Scholar
  13. 13.
    Mielke, A., Saint-Venant’s problem and semi-inverse solutions in nonlinear elasticity. Arch. Rational Mech. Anal. 102, 205–229 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Breuer, S., & Roseman, J. J., On Saint-Venant’s principle in three-dimensional nonlinear elasticity. Arch. Rational Mech. Anal. 63, 191–203 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Breuer, S., & Roseman, J. J., Saint-Venant’s principle in nonlinear plane elasticity with sufficiently small strains. Arch. Rational Mech. Anal. 80, 19–37 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Knops, R. J., & Payne, L. E., A Saint-Venant principle for nonlinear elasticity. Arch. Rational Mech. Anal. 81, 1–12 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Horgan, C. O., & Abeyaratne, R., Finite anti-plane shear of a semi-infinite strip subject to a self-equilibrated end traction. Q. Appl. Math. 40, 407–417 (1983).MathSciNetMATHGoogle Scholar
  18. 18.
    Galdi, G. P., Knops, R. J., & Rionero, S., Asymptotic behavior in the nonlinear elastic beam. Arch. Rational Mech. Anal. 87, 305–318 (1985).MathSciNetADSMATHGoogle Scholar
  19. 19.
    Abeyaratne, R., Horgan, C. O., & Chung, D.-T., Saint-Venant end effects for incremental plane deformations of incompressible nonlinearly elastic materials. J. Appl. Mech. 52, 847–852 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Mielke, A., Normal hyperbolicity and Saint-Venant’s principle, Preprint 10, Mathematical Problems in Nonlinear Mechanics, Univ. Stuttgart (1988).Google Scholar
  21. 21.
    Durban, D., & Stronge, W. J., Diffusion of self-equilibrating end loads in elastic solids. J. Appl. Mech. 55, 492–495 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    Vafeades, P., & Horgan, C. O., Exponential decay estimates for solutions of the von Kármán equations on a semi-infinite strip. Arch. Rational Mech. Anal. 104, 1–25 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Quintanilla, R., Asymptotic behavior of solutions in elasticity (preprint, Univ. Polit. de Catalunya, Barcelona, Spain, 1987).Google Scholar
  24. 24.
    Horgan, C. O., & Payne, L. E., Decay estimates for second-order quasilinear partial differential equations. Advances in Appl. Math. 5, 309–332 (1984).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Horgan, C. O., & Payne, L. E., Decay estimates for a class of second-order quasi-linear equations in three dimensions. Arch. Rational Mech. Anal. 86, 279–289 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Horgan, C. O., A note on the spatial decay of a three-dimensional minimal surface over a semi-infinite cylinder. J. Math. Anal. Appl. 107, 285–290 (1985).MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Breuer, S., & Roseman, J. J., Phragmén-Lindelöf decay theorems for classes of nonlinear Dirichlet problems in a circular cylinder. J. Math. Anal. Appl. 113, 59–77 (1986).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Breuer, S., & Roseman, J. J., Decay theorems for nonlinear Dirichlet problems in semi-infinite cylinders. Arch. Rational Mech. Anal. 94, 363–371 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Horgan, C. O., Some applications of maximum principles in linear and nonlinear elasticity, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations, pp. 49–67, ed. P. W. Schaefer, Pitman Research Notes in Mathematics Series, 175, Longman, New York, 1988.Google Scholar
  30. 30.
    Horgan, C. O., & Payne, L. E., Decay estimates for a class of nonlinear boundary value problems in two dimensions. SIAM J. Math. Anal. 20, 782–788 (1989).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Horgan, C. O., & Payne, L. E., On the asymptotic behavior of solutions of inhomogeneous second-order quasilinear partial differential equations. Q. Appl. Math. 47 (1989).Google Scholar
  32. 32.
    Horgan, C. O., & Siegel, D., On the asymptotic behavior of a minimal surface over a semi-infinite strip. J. Math. Anal. Appl. (in press).Google Scholar
  33. 33.
    Knowles, J. K., On finite anti-plane shear for incompressible elastic materials. J. Austral. Math. Soc. Series B 19, 400–415 (1976).MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Knowles, J. K., The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int. J. Fracture 13, 611–639 (1977).MathSciNetCrossRefGoogle Scholar
  35. 35.
    Gurtin, M. E., Topics in Finite Elasticity, SIAM Regional Conference Series in Applied Mathematics, No. 35, SIAM, Philadelphia, 1981.Google Scholar
  36. 36.
    Mitrinovic, D. S., Analytic Inequalities, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • C. O. Horgan
    • 1
    • 2
  • L. E. Payne
    • 1
    • 2
  1. 1.Department of Applied MathematicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations