Hydrogen Metabolism: Structure and Function of Hydrogenases

  • S. P. J. Albracht
Part of the 41. Colloquium der Gesellschaft für Biologische Chemie 5.–7. April 1990 in Mosbach/Baden book series (MOSBACH, volume 41)

Abstract

Hydrogenases are involved in the reduction of H+ or the oxidation of H2 in a wide variety of microorganisms. Anaerobic bacteria living on the fermentation of organic substrates often dispose of their excess of reducing equivalents by way of the reduction of protons. The major source of these reducing equivalents is pyruvate. Many bacteria can oxidize H2, which enables them to produce ATP and to reduce a variety of substrates. Hydrogen is also produced in N2-fixing organisms: at least one H2 is formed for every molecule of N2 reduced. In such organisms hydrogenase functions to recapture the energy-rich reducing equivalents. For more extensive information on the function of hydrogenases, the reader is referred to the impressive general review of Adams et al. (1980). The discovery of three genetically different hydrogenases in Desulfovibrio vulgaris (Lissolo et al. 1986) has reinforced the notion (Odom and Peck 1981) that molecular hydrogen also plays a central role in the bioenergetics of sulphate-reducing bacteria (Fauque et al. 1988).

Keywords

Nickel Fermentation Codon Selenium Carbon Monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.W.W. (1987) The mechanism of H2 activation and CO binding by hydrogenase I and hydrogenase II of Clostridium pasteurianum. J. Biol. Chem. 262:15054–15061PubMedGoogle Scholar
  2. Adams, M.W.W. & Mortenson, L.E. (1984) The purification of hydrogenase II (uptake hydrogenase) from the anaerobic N2-fixing bacterium Clostridium pasteurianum. Biochim. Biophys. Acta 766:51–61CrossRefGoogle Scholar
  3. Adams, M.W.W., Mortenson, L.E. & Chen, J.-S. (1980) Hydrogenase. Biochim. Biophys. Acta 594:105–176PubMedGoogle Scholar
  4. Adams, M.W.W., Eccleston, E. & Howard, J.B. (1989) Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum. Proc. Natl. Acad. Sci. USA 86:4932–4936PubMedCrossRefGoogle Scholar
  5. Albracht, S.P.J., Graf, E.-G. & Thauer, R.K. (1982) The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum. FEBS Lett. 140:311–313PubMedCrossRefGoogle Scholar
  6. Albracht, S.P.J., Kröger, A., Van der Zwaan, J.W., Unden, G., Böcher, R., Mell, H. & Fontijn, R.D. (1986) Direct evidence for sulphur as a ligand to nickel in hydrogenase: an EPR study of the enzyme from Wolinella succinogenes enriched in 33S. Biochim. Biophys. Acta 874:116–127CrossRefGoogle Scholar
  7. Cammack, R. (1988) Nickel in metalloproteins. Adv. Inorg. Chem. 32:297–333CrossRefGoogle Scholar
  8. Cammack, R., Patil, D.S., Aguirre, R. & Hatchikian, E.C. (1982) Redox properties of the ESR-de-tectable nickel in hydrogenase from Desulfovibrio gigas. FEBS Lett. 142:289–292CrossRefGoogle Scholar
  9. Cammack, R., Chapman, A. & Hatchikian, E.C. (1988) Solvent accessibility of metal centres in a nickel-hydrogenase. 2nd Int. Symp. Mol. Biol. Hydrogenase, Helen, Georgia, USA (Abstr)Google Scholar
  10. Cammack, R., Kovacs, K.L., McCracken, J. & Peisach, J. (1989) Spectroscopic characterization of the nickel and iron-sulphur clusters of hydrogenase from the purple photosynthetic bacterium Thiocapsa roseopersicina. 2. Electron spin-echo spectroscopy. Eur. J. Biochem. 182:363–366PubMedCrossRefGoogle Scholar
  11. Chapman, A., Cammack, R., Hatchikian, E.C., McCracken, J. & Peisach, J. (1988) A pulsed EPR study of redox-dependent hyperfine interactions for the nickel centre of Desulfo vibrio gigas hydrogenase. FEBS Lett. 242:134–138PubMedCrossRefGoogle Scholar
  12. Chen, J.-S. & Blanchard, D.K. (1984) Purification and properties of the H2-oxidizing (uptake) hydrogenase of the N2-fixing anaerobe Clostridium pasterianum W5. Biochem. Biophys. Res. Commun. 122:9–16PubMedCrossRefGoogle Scholar
  13. Chen, J.-S. & Mortenson, L.E. (1974) Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim. Biophys. Acta 371:283–298PubMedGoogle Scholar
  14. Cord-Ruwisch, R., Seitz, H.-J. & Conrad, R. (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357CrossRefGoogle Scholar
  15. Coremans, J.M.C.C., Van der Zwaan, J.W. & Albracht, S.P.J. (1989) Redox behaviour of nickel in hydrogenase from Methanobacterium thermoautotrophicum (strain Marburg). Correlation between the nickel valence state and enzyme activity. Biochim. Biophys. Acta 997:256–267CrossRefGoogle Scholar
  16. De Wit, R. & Van Gemerden, H. (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol. Ecol. 45:117–126CrossRefGoogle Scholar
  17. Eidsness, M.K., Scott, R.A., Prickril, B.C., DerVartanian, D.V., LeGall, J., Moura, I., Moura, J.J.G. & Peck, H.D., Jr. (1989) Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe] hydrogenase from Desulfovibrio baculatus. Proc. Natl. Acad. Sci. USA 86:147–151PubMedCrossRefGoogle Scholar
  18. Erbes, D.L., Burris, R.H. & Orme-Johnson, W.H. (1975) On the iron-sulfur cluster in hydrogenase from Clostridium pasteurianum W5. Proc. Natl. Acad. Sci. USA 72:4795–4799PubMedCrossRefGoogle Scholar
  19. Fauque, G., Peck, H.D., Jr., Moura, J.J.G., Huynh, B.H., Berlier, Y., DerVartanian, D.V., Teixeira, M., Przybyla, A.E. & Lespinat, P.A. (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Rev. 54:299–344CrossRefGoogle Scholar
  20. Fernandez, V.M., Aguirre, R. & Hatchikian, E.C. (1984) Reductive activation and redox properties of hydrogenase from Desulfovibrio gigas. Biochim. Biophys. Acta 790:1–7CrossRefGoogle Scholar
  21. Fernandez, V.M., Hatchikian, E.C. & Cammack, R. (1985) Properties and reactivation of two different deactivated forms of Desulfovibrio gigas hydrogenase. Biochim. Biophys. Acta 832:69–79CrossRefGoogle Scholar
  22. Fernandez, V.M., Hatchikian, E.C., Patil, D.S. & Cammack, R. (1986) ESR-detectable nickel and iron-sulphur centres in relation to the reversible activation of Desulfovibrio gigas hydrogenase. Biochim. Biophys. Acta 883:145–154CrossRefGoogle Scholar
  23. Filipiak, M., Hagen, W.R., Grande, H.J., Dunham, W.R., Van Berkel-Arts, A., Krüse-Wolters, M. & Veeger, C. (1987) Structural and magnetic properties of Fe-hydrogenases reinvestigated. Rec. Trav. Chim. Pays Bas 106:230Google Scholar
  24. George, G.N., Prince, R.C., Stockley, K.E. & Adams, M.W.W. (1989) X-ray absorption-spectroscopic evidence for a novel iron cluster in hydrogenase II from Clostridium pasteurianum. Biochem. J. 259:597–600PubMedGoogle Scholar
  25. Graf, E.-G. & Thauer, R.K. (1981) Hydrogenase from Methanobacterium thermoautotrophicum: a nickel-containing enzyme. FEBS Lett. 136:165–169CrossRefGoogle Scholar
  26. Hagen, W.R., Van Berkel-Arts, A., Krüse-Wolters, K.M., Dunham, W.R. & Veeger, C. (1986a) EPR of a novel high-spin component in activated hydrogenase from Desulfovibrio vulgaris (Hildenborough). FEBS Lett. 201:158–162PubMedCrossRefGoogle Scholar
  27. Hagen, W.R., Van Berkel-Arts, A., Krüse-Wolters, K.M., Voordouw, G. & Veeger, C. (1986b) The iron-sulfur composition of the active site of hydrogenase from Desulfovibrio vulgaris (Hildenborough) deduced from its subunit structure and total iron-sulfur content. FEBS Lett. 203:59–63CrossRefGoogle Scholar
  28. Hausinger, R.P. (1987) Nickel utilization by microorganisms. Microbiol. Rev. 51:22–42PubMedGoogle Scholar
  29. He, S.H., Teixeira, M., LeGall, J., Patil, D.S., Moura, I., Moura, J.J.G., DerVartanian, D.V., Huynh, B.H. & Peck, H.D., Jr. (1989) EPR studies with77 Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. J. Biol. Chem. 264:2678–2682PubMedGoogle Scholar
  30. Johnson, M.K., Zambrano, I.C., Czechowski, M.H., Peck, H.D., Jr., DerVartanian, D.V. & LeGall, J. (1986) Magnetic circular dichroism and electron paramagnetic resonance studies of nickel-containing hydrogenases. In: Xavier, A.V. (ed) Frontiers in bioinorganic chemistry. VCH Verlagsgesellschaft mbH, Weinheim, FRG, pp. 36–44Google Scholar
  31. Kämpf, C. & Pfennig, N. (1986) Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and C. vinosum in the dark at various O2-concentrations. J. Basic Microbiol. 26:517–531CrossRefGoogle Scholar
  32. Kempner, W. & Kubowitz, F. (1933) Wirkung des Lichtes auf die Kohlenoxydhemmung der Buttersäuregärung. Biochem. Z. 265:245–252Google Scholar
  33. Kowal, A.T., Adams, M.W.W. & Johnson, M.K. (1988) Electron paramagnetic resonance studies of the low temperature photolytic behavior of oxidized hydrogenase I from Clostridium pasteurianum. 2nd Int. Symp. Mol. Biol. Hydrogenase, Helen, Georgia, USA (Abstr)Google Scholar
  34. Krasna, A.I. (1979) Hydrogenase: properties and applications. Enzyme Microb. Technol. 1:165–172CrossRefGoogle Scholar
  35. Lancaster, J.R., Jr. (1980) Soluble and membrane-bound paramagnetic centers in Methanobacterium bryantii. FEBS Lett. 115:285–288PubMedCrossRefGoogle Scholar
  36. Lancaster, J.R., Jr. (1988) The bioinorganic chemistry of nickel. VCH Verlagsgesellschaft mbH, Weinheim, FRGGoogle Scholar
  37. Ledere, M., Colbeau, A., Cauvin, B. & Vignais, P.M. (1988) Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol. Gen. Genet. 214:97–107CrossRefGoogle Scholar
  38. Li, C., Peck, H.D., Jr., LeGall, J. & Przybyla, A.E. (1987) Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFe) hydrogenase of Desulfovibrio gigas. DNA 6:539–551PubMedCrossRefGoogle Scholar
  39. Lindahl, P.A., Kojima, N., Hausinger, R.P., Fox, J.A., Teo, B.K., Walsh, C.T. & Orme-Johnson, W.H. (1984) Nickel and iron EXAFS of F420-reducing hydrogenase from Methanobacterium thermoau-totrophicum. J. Am. Chem. Soc. 106:3062–3064CrossRefGoogle Scholar
  40. Lissolo, T., Pulvin, S. & Thomas, D. (1984) Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential. J. Biol. Chem. 259 :11725–11729PubMedGoogle Scholar
  41. Lissolo, T., Choi, E.S., LeGall, J. & Peck, H.D., Jr. (1986) The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). Biochem. Biophys. Res. Commun. 139:701–708PubMedCrossRefGoogle Scholar
  42. Morton, J.R. & Preston, K.F. (1984) An ESR study at 4 K of the reaction between H and Ni (CO)4. J. Chem. Phys. 81:5775–5778CrossRefGoogle Scholar
  43. Moura, J.J.G., Moura, I., Huynh, B.H., Krüger, H.-J., Teixeira, M., DuVarney, R.G., DerVartanian, D.V., Xavier, A. V., Peck, H.D., Jr. & LeGall, J. (1982) Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase. Biochem. Biophys. Res. Commun. 108:1388–1393PubMedCrossRefGoogle Scholar
  44. Odom, J.M. & Peck, H.D., Jr. (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol. Lett. 12:47–50CrossRefGoogle Scholar
  45. Odom, J.M. & Peck, H.D., Jr. (1984) Hydrogenase, electron-transfer proteins and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Ann. Rev. Microbiol. 38:551–592CrossRefGoogle Scholar
  46. Patil, D.S., Czechowski, M.H., Huynh, B.H., LeGall, J., Peck, H.D., Jr. & DerVartanian, D.V. (1986) A reversible effect of low carbon monoxide concentrations on the EPR spectra of the periplasmic hydrogenase from Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun. 137:1086–1093PubMedCrossRefGoogle Scholar
  47. Patil, D.S., Moura, J.J.G., He, S.H., Teixeira, M., Prickril, B.C., DerVartanian, D.V., Peck, H.D., Jr., LeGall, J. & Huynh B.H. (1988a) EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris. J. Biol. Chem. 263:18732–18738PubMedGoogle Scholar
  48. Patil, D.S., Huynh, B.H., He, S.H., Peck, H.D., Jr., DerVartanian, D.V. & LeGall, J. (1988b) A reversible photoconversion between the carbon monoxide induced axial 2.06 and the rhombic 2.10 EPR signals of the periplasmic hydrogenase from Desulfovibrio vulgaris. J. Am. Chem. Soc. 110:8533–8534CrossRefGoogle Scholar
  49. Prickril, B.C., Czechowski, M.H., Przybyla, A.E., Peck, H.D., Jr. & LeGall, J. (1986) A putative signal peptide on the smaller subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris (Hildenborough). J. Bacteriol. 167:722–725PubMedGoogle Scholar
  50. Rusnak, F.M., Adams, M.W.W., Mortenson, L.E. & Münck E. (1987) Mössbauer study of Clostridium pasteurianum hydrogenase II: evidence for a novel three-iron cluster. J. Biol. Chem. 262:38–41PubMedGoogle Scholar
  51. Scott, R.A., Wallin, S.A., Czechowski, M., DerVartanian, D.V., LeGall, J., Peck, H.D., Jr. & Moura, I. (1984) X-ray absorption spectroscopy of nickel in the hydrogenase from Desulfovibrio gigas. J. Am. Chem. Soc. 106:6864–6865CrossRefGoogle Scholar
  52. Scott, R.A., Czechowski, M., DerVartanian, D.V., LeGall, J., Peck, H.D., Jr. & Moura, I. (1985) Nickel X-ray absorption spectroscopy of Desulfovibrio gigas hydrogenase. Rev. Port. Quim. 27:67–70Google Scholar
  53. Tan, S.-L., Fox, J.A., Kojima, N., Walsh, C.T. & Orme-Johnson, W.H. (1984) Nickel coordination in deazoflavin and viologen-reducing hydrogenase from Methanobacterium thermoautotrophicum. J. Am. Chem. Soc. 106:3064–3066CrossRefGoogle Scholar
  54. Teixeira, M., Moura, I., Xavier, A.V., Huynh, B.H., DerVartanian, D.V., Peck, H.D., Jr., LeGall, J. & Moura, J.J.G. (1985) EPR studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas. J. Biol. Chem. 260:8942–8950PubMedGoogle Scholar
  55. Teixeira, M., Moura, I., Xavier, A.V., Moura, J.J.G., LeGall, J., DerVartanian, D.V., Peck, H.D., Jr. & Huynh, B.H. (1989) Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers. J. Biol. Chem. 264:16435–16450PubMedGoogle Scholar
  56. Thauer, R.K., Käufer, B., Zähringer, M. & Jungermann, K. (1974) The reaction of the iron-sulfur protein hydrogenase with carbon monoxide. Eur. J. Biochem. 42:447–452PubMedCrossRefGoogle Scholar
  57. Van der Zwaan, J.W., Albracht, S.P.J., Fontijn, R.D. & Slater, E.C. (1985) Monovalent nickel in hydrogenase from Chromatium vinosum. FEBS Lett. 179:271–277PubMedCrossRefGoogle Scholar
  58. Van der Zwaan, J.W., Albracht, S.P.J., Fontijn, R.D. & Roelofs, Y.B.M. (1986) EPR evidence for direct interaction of carbon monoxide with nickel in hydrogenase from Chromatium vinosum. Biochim. Biophys. Acta 872:208–215CrossRefGoogle Scholar
  59. Van der Zwaan, J.W., Bouwens, E.C.M. & Albracht, S.P.J. (1988) Probing the active site of hydrogenase from Chromatium vinosum. 2nd Int. Symp. Mol. Biol. Hydrogenase, Helen, Georgia, USA (Abstr)Google Scholar
  60. Van der Zwaan, J.W., Coremans, J.M.C.C., Bouwens, E.C.M. & Albracht, S.P.J. (1990) Effect of 17O2 and 13 CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum. Biochim. Biophys. Acta (in press)Google Scholar
  61. Van Dijk, C., Grande, HJ., Mayhew, S.G. & Veeger, C. (1980) Properties of hydrogenase from Megasphaera elsdenii. Eur. J. Biochem. 107:251–261PubMedCrossRefGoogle Scholar
  62. Voordouw, G. & Brenner, S. (1985) Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 148:515–520PubMedCrossRefGoogle Scholar
  63. Voordouw, G., Walker, J.E. & Brenner, S. (1985) Cloning of the gene encoding for the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and determination of the NH2-terminal sequence. Eur. J. Biochem. 148:509–514PubMedCrossRefGoogle Scholar
  64. Voordouw, G., Hagen, W.R., Krüse-Wolters, K.M., Van Berkel-Arts, A. & Veeger, C. (1987) Purification and characterisation of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Eschericia coli Eur. J. Biochem. 162:31–36PubMedCrossRefGoogle Scholar
  65. Walsh, C.T. & Orme-Johnson, W.H. (1987) Nickel enzymes. Biochemistry 26:4901–4906PubMedCrossRefGoogle Scholar
  66. Zambrano, I.C., Kowal, A.T., Mortenson, L.E., Adams, M.W.W. & Johnson, M.K. (1989) Magnetic circular dichroism and electron magnetic paramagnetism studies of hydrogenase I and II from Clostridium pasteurianum J. Biol. Chem. 264:20974–20983PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • S. P. J. Albracht
    • 1
  1. 1.E.C. Slater Institute for Biochemical ResearchUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations