Skip to main content

Relationship of Cytochrome caa3 from Thermus thermophilus to Other Heme- and Copper-Containing Terminal Oxidases

  • Conference paper
The Molecular Basis of Bacterial Metabolism

Abstract

Cytochrome oxidases are a key component of the energy metabolism of most aerobic organisms from mammals to bacteria. They are the final enzyme of the membrane-associated respiratory chain responsible for converting the chemical energy of reduced substrates to a transmembrane electrochemical potential, which is used by the cell for a wide variety of energy-requiring processes. The most widely studied oxidase is the cytochrome c oxidase (cytochrome aa3 oxidase) of the mammalian mitochondrion. This complex, integral membrane protein contains 13 subunits and 4 canonical metal centers : heme centers, a and a3 ; copper centers, CuA and CuB. It is responsible for electron transfer from reduced cytochrome c to dioxygen with the concomitant reduction of dioxygen to water and the coupled vectorial transfer of protons across the mitochondrial membrane (see Chan and Li 1990; Palmer 1987 for recent reviews).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, S., de Bruijn, Coulson, A.R., Eperon, I.C., Sanger, F. & Young, I.G. (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156:683–717

    Article  PubMed  CAS  Google Scholar 

  • Annemtiller, S. & Schäfer, G. (1989) Cytochrome aa3 from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett. 244:451–455

    Article  Google Scholar 

  • Anraku, Y. (1988) Bacterial electron transport chains. Annu. Rev. Biochem. 57:101–132

    Article  PubMed  CAS  Google Scholar 

  • Bisson, R., Steffens, G.C.M. & Buse, G. (1982a) Localization of lipid binding domain(s) on subunit II of beef heart cytochrome c oxidase. J. Biol. Chem. 257:6716–6720

    PubMed  CAS  Google Scholar 

  • Bisson, R., Steffens, G.C.M., Capaldi, R.A. & Buse, G. (1982b) Mapping of the cytochrome c binding site on cytochrome c oxidase. FEBS Lett. 144:359–363

    Article  PubMed  CAS  Google Scholar 

  • Bonitz, S.G., Coruzzi, G., Thalenfeld, B.E. & Tzagoloff, A. (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit I of yeast cytochrome oxidase. J. Biol. Chem. 24:11927–11941

    Google Scholar 

  • Chan, S.I. & Li, P.M. (1990) Cytochrome c oxidase: understanding nature’s design of a proton pump. Biochemistry 29:1–12

    Article  PubMed  CAS  Google Scholar 

  • Chepuri, V., Lemieux, L., Au, D.C.T. & Gennis, R.B. (1990) The Sequence of the cyo Operon Indicates Substantial Structural Similarities between the Cytochrome o Ubiquinol Oxidase of Escherichia coli and the aa 3-type Family of Cytochrome c Oxidases. J. Biol. Chem. 265:11185–11192

    PubMed  CAS  Google Scholar 

  • Clary, D.O. & Wolstenholme, D.R. (1983a) Nucleotide sequence of a segment of Drosophila mitochondrial DNA that contains the genes for cytochrome c oxidase subunits II and III and ATPase subunit 6. Nucleic Acids Res. 11:4211–4227

    Article  PubMed  CAS  Google Scholar 

  • Clary, D.O. & Wolstenholme, D.R. (1983b) Genes for cytochrome c oxidase subunit I, urf2, and 3 tRNA’s in Drosophila mitochondrial DNA. Nucleic Acids Res. 11:6859–6872

    Article  PubMed  CAS  Google Scholar 

  • Coruzzi, G. & Tzagoloff, A. (1979) Assembly of mitochondrial membrane systems. DNA sequence of subunit 2 of yeast cytochrome oxidase. J. Biol. Chem. 254:9324–9330

    PubMed  CAS  Google Scholar 

  • Dayhoff, M.O., Schwartz, R.M. & Orcutt, B.C. (1978) A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed) Atlas of protein sequence and structure, vol. 5, suppl. 3. National Biomedical Research Foundation, Washington, D.C., pp. 345–352

    Google Scholar 

  • Degli Esposti, M., Ghelli, A., Luchetti, R., Crimi, M. & Lenaz, G. (1989) New approaches to the prediction of the folding of membrane proteins with redox function. Ital. J. Biochem. 38:1–22

    PubMed  CAS  Google Scholar 

  • Devereux, J., Haeberli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F. (1981) Similar amino acid sequences: chance or common ancestry? Science 214:149–159

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F. (1986) Of urfs and orfs. A primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley, California

    Google Scholar 

  • Einarsdöttir, O., Killough, P.M., Fee, J.A. & Woodruff, W.H. (1989) An infrared study of the binding and photodissociation of carbon monoxide in cytochrome ba3 from Thermus thermophilus. J. Biol. Chem. 264:2405–2408

    PubMed  Google Scholar 

  • Fee, J.A., Kuila, D., Mather, M.W. & Yoshida, T. (1986) Respiratory proteins from extremely thermophilic, aerobic bacteria. Biochim. Biophys. Acta 853:153–185

    PubMed  CAS  Google Scholar 

  • Fee, J.A., Mather, M.W., Springer, P., Hensel, S. & Buse, G. (1988) Isolation and partial sequence of the A-protein gene of Thermus thermophilus cytochrome q aa3. Ann. New York Acad. Sci. 550:33–38

    Article  CAS  Google Scholar 

  • Gelles, J., Blair, D.F. & Chan, S.I. (1986) The proton-pumping site of cytochrome c oxidase: a model of its structure and mechanism. Biochim. Biophys. Acta 853:205–236

    PubMed  CAS  Google Scholar 

  • Gribskov, M., McLachlan, A.D. & Eisenberg, D. (1987) Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 84:4355–4358

    Article  PubMed  CAS  Google Scholar 

  • Hata, A., Kirino, Y., Matsuura, K., Itoh, S., Hiyama, T., Konishi, K., Kita, K. & Anraku, Y. (1985) Assignment of ESR signals of Escherichia coli terminal oxidase complexes. Biochim. Biophys. Acta 810:62–72

    Article  PubMed  CAS  Google Scholar 

  • Holm, L., Saraste, M. & Wikström, M. (1987) Structural models of the redox centres in cytochrome oxidase. EMBO J. 6:2819–2823

    PubMed  CAS  Google Scholar 

  • Hon-nami, K. & Oshima, T. (1984) Purification and characterization of cytochrome c oxidase from Thermus thermophilus HB8. Biochemistry 23:454–460

    Article  CAS  Google Scholar 

  • Ishizuka, M., Machida, K., Shimada, I. & Sone, N. (1990) (submitted)

    Google Scholar 

  • Kita, K., Konishi, K. & Anraku, Y. (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. J. Biol. Chem. 259:3368–3374

    PubMed  CAS  Google Scholar 

  • Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Martin, C.T., Scholes, C.P. & Chan, S.I. (1988) On the nature of cysteine coordination to CuA in cytochrome c oxidase. J. Biol. Chem 263:8420–8429

    PubMed  CAS  Google Scholar 

  • Mather, M.W. (1988) Base composition-independent hybridization in dried agarose gels: screening and recovery for cloning of genomic DNA fragments. Bio Techniques 6:444–447

    CAS  Google Scholar 

  • Mather, M.W., Springer, P., & Fee, J.A. (1990) (submitted)

    Google Scholar 

  • Michel, H., Weyer, K.A., Gruenberg, H., Dünger, I., Oesterhelt, D. & Lottspeich, F. (1986) The ‘light’ and ‘medium’ subunits of the photosynthetic reaction centre from Rhodospeudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J. 5:1149–1158

    PubMed  CAS  Google Scholar 

  • Millet, F., de Jong, C., Paulson, L. & Capaldi, R.A. (1983) Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c. Biochemistry 22:546–552

    Article  Google Scholar 

  • Müller, M., Schläpfer, B. & Azzi, A. (1988a) Preparation of a one-subunit cytochrome oxidase from Paracoccus denitrificans: spectral analysis and enzymatic activity. Biochemistry 27:7546–7551

    Article  PubMed  Google Scholar 

  • Müller, M., SchJäpfer, B. & Azzi, A. (1988b) Cytochrome c oxidase from Paracoccus denitrificans: both hemes are located in subunit I. Proc. Natl. Acad. Sci. USA 85:6647–6651

    Article  PubMed  Google Scholar 

  • Palmer, G. (1987) Cytochrome oxidase: a perspective. Pure Appl. Chem. 59:749–758

    Article  CAS  Google Scholar 

  • Puustinen, A., Finel, M., Virkki, M. & Wikström, M. (1989) Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett. 249:163–167

    Article  PubMed  CAS  Google Scholar 

  • Raitio, M., Tuulikki, J. & Saraste, M. (1987) Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J. 6:2825–2833

    PubMed  CAS  Google Scholar 

  • Robillard, G.T. & Lolkema, J.S. (1988) Enzymes II of the phosphoeno/pyruvate-dependent sugar transport systems: a review of their structure and mechanism of sugar transport. Biochim. Biophys. Acta 947:493–519

    PubMed  CAS  Google Scholar 

  • Salerno, J.C., Bolgiano, B. & Ingledew, W.J. (1989) Potentiometrie titration of cytochrome-bo type quinol oxidase of Escherichia coli: evidence for heme-heme and copper-heme interaction. FEBS Lett. 247:101–105

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S. & Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Saraste, M., Raitio, M., Tuulikki, J. & Perämaa, A. (1986) A gene in Paracoccus for subunit III of cytochrome oxidase. FEBS Lett. 206:154–156

    Article  PubMed  CAS  Google Scholar 

  • Sone, N., Yanagita, Y., Hon-Nami, K., Fukumori, Y. & Yamanaka, T. (1983) Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidases. FEBS Lett 155:150–154

    Article  CAS  Google Scholar 

  • Sone, N., Yokoi, F., Fu, T., Ohta, S., Metso, T., Raitio, M. & Saraste, M. (1988) Nucleotide sequence of the gene coding for cytochrome oxidase subunit I from the thermophilic bacterium PS3. J. Biochem. (Tokyo) 103:606–610

    CAS  Google Scholar 

  • Steffens, G.J. & Buse, G. (1979) Studies on cytochrome c oxidase, IV. Primary structure and function of subunit II. Hoppe-Seyler’s Z. Physiol. Chem. 360:613–619

    CAS  Google Scholar 

  • Steinrücke, P., Steffens, G.C.M., Panskus, G., Buse, G. & Ludwig, B. (1987) Subunit II of cytochrome c oxidase from Paracoccus denitrificans. DNA sequence, gene expression and the protein. Eur. J. Biochem. 167:431–439

    Article  PubMed  Google Scholar 

  • Sweet, R.M. & Eisenberg, D. (1983) Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structures. J. Mol. Biol. 171:479–488

    Article  PubMed  CAS  Google Scholar 

  • Thalenfeld, B.E. & Tzagoloff, A. (1980) Assembly of the mitochondrial membrane system. Sequence of the Oxi2 gene of yeast mitochondrial DNA. J. Biol. Chem. 255:6173–6180

    PubMed  CAS  Google Scholar 

  • Wikström, M., Saraste, M. & Pentillä, T. (1985) Relationships between structure and function in cytochrome oxidase. In: Martonosi, A.M. (ed) The enzymes of biological membranes, vol. 4. Plenum, New York

    Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51:221–271

    PubMed  CAS  Google Scholar 

  • Yoshida, T. & Fee, J.A. (1984) Studies on cytochrome c oxidase activity of the cytochrome c1aa3 complex from Thermus thermophilus. J. Biol. Chem. 529:1031–1036

    Google Scholar 

  • Yoshida, T., Lorence, R.M., Choc, M.G., Tarr, G.E., Findling, K.L. & Fee, J.A. (1984) Respiratory proteins from the extremely thermophilic aerobic bacterium, Thermus thermophilus. J. Biol. Chem. 259:112–123

    PubMed  CAS  Google Scholar 

  • Zimmermann, B.H., Nitsche, C.I., Fee, J.A., Rusnak, F. & Münck, E. (1988) Properties of a copper-containing cytochrome ba3: a second terminal oxidase from the extreme thermophile Thermus thermophilus. Proc. Natl. Acad. Sci. USA 85:5779–5783

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mather, M.W., Springer, P., Fee, J.A. (1990). Relationship of Cytochrome caa3 from Thermus thermophilus to Other Heme- and Copper-Containing Terminal Oxidases. In: Hauska, G., Thauer, R.K. (eds) The Molecular Basis of Bacterial Metabolism. 41. Colloquium der Gesellschaft für Biologische Chemie 5.–7. April 1990 in Mosbach/Baden, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75969-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75969-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75971-0

  • Online ISBN: 978-3-642-75969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics