Skip to main content

Mechanism of Negative Feed-back Regulation of c-myc Gene Expression in B-Cells and its Inactivation in Tumor Cells

  • Chapter
Book cover Mechanisms in B-Cell Neoplasia 1990

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 166))

  • 103 Accesses

Abstract

The c-myc proto-oncogene is involved in the control of cellular proliferation and differentiation (for review see Cole 1986). Its deregulated expression, caused by chromosomal translocation (Dalla-Favera 1982, 1983; Taub 1982), amplification (Collins and Groudine 1982; Dalla-Favera 1982) or retroviral insertion (Hayward 1981), is associated with lymphoid and non-lymphoid malignancies in different species. The mechanism regulating normal c-myc gene expression and the cause of its deregulation in tumor cells remains largely unknown. Since normal c-myc alleles are down-regulated in the presence of constitutively expressed c-myc oncogenes in naturally occurring tumors (Leder 1983) as well as in in vitro transformed cells (Rapp 1985; Lombardi 1987) and transgenic mice (Adams 1985), it has been frequently suggested that c-myc expression may be under the control of negative feed-back regulation. However, the actual existence of such a regulatory function remains controversial and its mechanism of action unknown. In an attempt to clarify these issues we have characterized a negative feed-back loop regulating c-myc expression in human EBV-immortalized lymphoblastoid cells and then comprehensively investigated the activity of this mechanism in a number of cell types. Our results provide direct evidence for the existence of a dose-dependent negative feed-back loop and preliminarily define its mechanism. However, we find that this mechanism is inactive in all tumor cell lines tested derived from a variety tissues, suggesting that its inactivation may represent a general regulatory disturbance of transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985 318:533–8.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D.L., Groudine, M. (1986). A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL-60 cells. Nature 321:702–706.

    Article  PubMed  CAS  Google Scholar 

  • Blasi E,Mathieson BJ,Varesio L, Cleveland JL, Bordiert PA, Rapp UR (1985) Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318:667–70.

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, Gray HE, Pardee AB, Dean M, Sonenshein GE (1984) Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36:241–7.

    Article  PubMed  CAS  Google Scholar 

  • Cesarman E, Dalla-Favera R, Bentley D, Groudine M (1987) Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238:1272–1275.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland JL, Huleihel M, Bressler P, Siebenlist U, Akiyama L, Eisenman RN, Rapp UR (1988) Negative regulation of c-myc transcription involves myc family proteins. Oncogene Res 3:357–75.

    PubMed  CAS  Google Scholar 

  • Cole, M.D. (1986). The myc oncogene: its role in transformation and differentiation. Ann. Rev. Genet 20, 361–384.

    Article  PubMed  CAS  Google Scholar 

  • Coppola JA, Cole MD (1986) Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320:760–3.

    Article  PubMed  CAS  Google Scholar 

  • Dalla-Favera, R., Bregni, M., Erickson, J., Patterson, D., Gallo, R.C., and Croce, C.M. (1982). Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Nat. Acad. Sci. USA.79, 7824–7827.

    Article  PubMed  CAS  Google Scholar 

  • Dalla-Favera, R., Gelmann, E.P., Martinotti, S., Franchini, G., Papas,T.S., Gallo, R.C., and Wong-Staal, F. (1982a). Cloning and characterization of different human sequences related to the one-gene (v-myc) of avian myelocytomatosis virus (MC29). Proc. Nat. Acad. Sci. USA 79, 6497–6501.

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Cleveland JL, Rapp UR, Ihle JN (1987) Role of myc in the abrogation of IL3 dependence of myeloid FDC-P1 cells. Oncogene Res 1:279–96.

    PubMed  CAS  Google Scholar 

  • Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP, Segal S (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322:748–50.

    Article  PubMed  CAS  Google Scholar 

  • Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Astrin SM (1985) Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 5:1969–76.

    PubMed  CAS  Google Scholar 

  • Erisman MD, Scott JK, Astrin SM (1989) Evidence that the familial adenomatous polyposis gene is involved in a subset of colon cancers with a complementable defect in c-myc regulation. Proc Natl Acad Sci USA 86:4264–8.

    Article  PubMed  CAS  Google Scholar 

  • Freytag SO (1988) Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol. 8:1614–24.

    PubMed  CAS  Google Scholar 

  • Hann, S.R., King M.W., Bentley, D.L., Anderson, C.W., and Eisenmann, R.N. (1988). A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Takimoto M, Bishop JM (1989) A FOS protein is present in a complex that binds a negative regulator of MYC. Genes Dev 3:293–303.

    Article  PubMed  CAS  Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480.

    Article  PubMed  CAS  Google Scholar 

  • Kakkis E, Riggs KJ, Gillespie W, Calame K (1989) A transcriptional repressor of c-myc. Nature 339:718–721.

    Article  PubMed  CAS  Google Scholar 

  • Keath EJ, Caimi PG, Cole MD. (1984) Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell 39:339–48.

    Article  PubMed  CAS  Google Scholar 

  • Langdon WY, Harris AW, Cory S (1989) Acceleration of B-lymphoid tumorigenesis in E mu-myc transgenic mice by v-H-ras and v-raf but not v-abl. Oncogene Res 4:253–8.

    PubMed  CAS  Google Scholar 

  • Lombardi, L., Newcomb, E.W., and Dalla-Favera, R. (1987). Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B-lymphoblasts. Cell 49, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Morse HC, Hartley JW, Fredrickson TN, Yetter RA, Majumdar C, Cleveland JL, Rapp UR (1986) Recombinant murine retroviruses containing avian v-myc induce a wide spectrum of neoplasms in newborn mice. Proc Nad Acad Sci USA 83:6868–72.

    Article  CAS  Google Scholar 

  • Mougneau E,Cerni C,Tillier F,Cuzin F (1988) Tumorigenic transformation of rat FR3T3 fibroblasts carrying an activated myc oncogene requires subsequent mutational events. Oncogene-Res 2:177–88.

    PubMed  CAS  Google Scholar 

  • Prochownik EV, Kukowska J (1986) Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation. Nature 322:848–50.

    Article  PubMed  CAS  Google Scholar 

  • Rapp UR, Cleveland JL, Brightman K, Scott A, Ihle JN (1985) Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 317:434–8.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RC, Stanton LW, Riley SC, Marcu KB, Witte ON (1986) Synergism of v-myc and v-Ha-ras in the in vitro neoplastic progression of murine lymphoid cells. Mol-Cell-Biol 6:3221–31.

    PubMed  CAS  Google Scholar 

  • Stewart TA, Pattengale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–37.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G.W., Searle, P.F., Chen H.Y., Brinster, R.L., and Palmiter, R.D. (1984). A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc. nat. Acad. Sci. USA 81:7318–7322.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, W., Marsh, K., and Yates, P. (1985). A vector that replicates as a plasmid and can be efficently selected in B-lymphoblasts transformed by Epstein-Barr Virus. Mol. Cell. Biol. 5, 410–413.

    PubMed  CAS  Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–41.

    Article  PubMed  CAS  Google Scholar 

  • Zerlm M, Julius MA, Cerni C, Marcu KB (1987) Elevated expression of an exogenous c-myc gene is insufficient for transformation and tumorigenic conversion of established fibroblasts. Oncogene 1:19–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lombardi, L., Grignani, F., Sternas, L., Cechova, K., Inghirami, G., Dalla-Favera, R. (1990). Mechanism of Negative Feed-back Regulation of c-myc Gene Expression in B-Cells and its Inactivation in Tumor Cells. In: Potter, M., Melchers, F. (eds) Mechanisms in B-Cell Neoplasia 1990. Current Topics in Microbiology and Immunology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75889-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75889-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75891-1

  • Online ISBN: 978-3-642-75889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics