Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 101))

  • 139 Accesses

Abstract

It is well established that a thrombocytopoiesis stimulating factor (TSF or thrombopoietin) is a major controlling factor of megakaryocytopoiesis and thus thrombocytopoiesis. During the past 30 years there have been intermittent periods of active research on the hormone, with most of the decisive work occurring during the past 15 years. It should be noted that the study has been difficult, largely because of the lack of suitable assays and stable sources of the hormone. Only during the past decade have reliable assays been developed and potent sources identified. Therefore, with these assays and sources, definitive studies on the presence and characterization of the hormone have now been published and will be discussed in this review. In this chapter, a model for megakaryocytopoiesis and its controUing factors, to include the megakaryocyte-colony stimuladng factor (meg-CSF) and thrombopoietin, are presented. Since thrombopoietin is the major controlling factor of in vivo blood platelet production, it will be considered in greater detail than the other factors. Its biology, mode of action, immunology, site of production, purification, and chemical characterization will be reviewed in some detail. Although the effects of thrombopoiedn on megakaryocytopoiesis appear to be similar to those of other humoral factors with their control of specific hematopoietic hneages, there are some aspects of platelet production mechanisms that need additional discussion, e.g., the effects of hypoxia and its ability to interrupt thrombocytopoiesis and the stimulating effects of erythropoietin and other growth factors on megakaryocytopoiesis and thrombocytopoiesis. The clinical aspects of thrombopoietin, to include several disease states that are known to be associated with increased or decreased thrombopoietin titers, will be briefly mentioned, along with a brief summary and views of its future in chnical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abildgaard CF, Simone JV (1967) Thrombopoiesis. Semin Hematol 4:424–452

    PubMed  CAS  Google Scholar 

  • Adams WH, Liu YK, Sullivan LW (1978) Humoral regulation of thrombopoiesis in man. J Lab Clin Med 91:141–147

    PubMed  CAS  Google Scholar 

  • Baynes RD, Bothwell TH, Flax H, McDonald TP, Atkinson P, Chetty N, Bezwoda WR, Mendelow BV (1987) Reactive thrombocytosis in pulmonary tuberculosis. J Clin Pathol 6:676–679

    Article  Google Scholar 

  • Bernstein R, Bagg A, Pinto M, Lewis D, Mendelow B (1986) Chromosome 3q21 abnormalities associated with hyperactive thrombopoiesis in acute blastic transformation of chronic myeloid leukemia. Blood 68:652–657

    PubMed  CAS  Google Scholar 

  • Bertoncello I, Bradley TR, Hodgson GS (1981) Characterizadon and enrichment of macrophage progenitor cells from normal and 5-fluorouracil treated mouse bone marrow by unit gravity sedimentation. Exp Hematol 9:604–610

    PubMed  CAS  Google Scholar 

  • Birks JW, Klassen LW, Gurney CW (1975) Hypoxia-induced thrombocytopenia in mice. J Lab Clin Med 86:230–238

    PubMed  CAS  Google Scholar 

  • Burstein SA (1986) Interleukin-3 promotes maturadon of murine megakaryocytes in vitro. Blood Cells 11:469–484

    PubMed  CAS  Google Scholar 

  • Burstein SA, Adamson JW, Harker LA (1980) Megakaryocytopoiesis in culture: moduladon by cholinergic mechanisms. J Cell Physiol 103:201–208

    Article  PubMed  CAS  Google Scholar 

  • Choi SI, McClure PD, Vranic M (1968) Thrombopoietin acdvity in idiopathic thrombocytopenia purpura, Br J Haematol 15:345–350

    Article  PubMed  CAS  Google Scholar 

  • Clark DA, Dessypris EN (1986) Effects of recombinant erythropoiedn on murine megakaryocytic colony formation in vitro. J Lab Clin Med 108:423–429

    PubMed  CAS  Google Scholar 

  • Clark SC, Kamen R (1987) The human hematopoietic colony-sdmulating factors. Science 236:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Clift R, McDonald TP (1979) A comparison of (35S) sodium sulfate and (75Se) selenomethionine as platelet labels for the assay of thrombopoietin. Proc Soc Exp Biol Med 162:380–382

    PubMed  CAS  Google Scholar 

  • Cooper GW (1970) The regulation of thrombopoiesis. In: Gordon AS (ed) Reguladon of hematopoiesis, vol 2. Appleton-Century-Crofts, New York, p 1611

    Google Scholar 

  • Cooper GW, Cooper B (1977) Relationships between blood platelet and erythrocyte formation. Life Sci 20:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Cullen WC, McDonald TP (1986) Comparison of stereologic techniques for the quandfication of megakaryocyte size and number. Exp Hematol 14:782–788

    Google Scholar 

  • Cullen WC, McDonald TP (1989) Effects of isobaric hypoxia on murine medullary and splenic megakaryocytopoiesis. Exp Hematol 17:246–251

    PubMed  CAS  Google Scholar 

  • Dassin E, Bourebia J, Najean Y, Rosset AM (1983) Partial purification of a thrombocytopoiesis-stimulating factor present in the serum of thrombocytopenic rats. Acta Haematol 69:249–253

    Article  PubMed  CAS  Google Scholar 

  • de Gabriele G, Penington DG (1967) Reguladon of platelet producdon: thrombopoietin. Br J Haematol 13:210–215

    Article  PubMed  Google Scholar 

  • Dessypris EN, Gleaton JH, Armstrong OL (1987) Effect of human recombinant erythropoiedn on human marrow megakaryocyte colony formation in vitro. Br J Haematol 65:265–269

    Article  PubMed  CAS  Google Scholar 

  • Dukes PP, Izadi P, Ortega JA, Shore NA, Gomperts E (1980) Inhibitory effect of interferon on mouse megakaryocytic progenitor cells in culture. Exp Hematol 8:1048–1056

    PubMed  CAS  Google Scholar 

  • Dukes PP, Egrie JC, Strickland TW, Browne JK, Lin FK (1986a) In vitro and in vivo megakaryocytopoietic effects of recombinant erythropoietin. Exp Hematol 14:469 (abstr)

    Google Scholar 

  • Dukes PP, Egrie JC, Strickland TW, Browne JK, Lin FK (1986b) Megakaryocyte colony sdmulating aCdvity of recombinant human and monkey erythropoietin. In: Levine R, Williams N, Levin J, Evatt B (eds) Megakaryocyte development and funcdon, vol 215. Alan R Liss, New York, p 105

    Google Scholar 

  • Ebbe S (1974) Thrombopoiedn. Blood 44:605–608

    PubMed  CAS  Google Scholar 

  • Ebbe S (1976) Biology of megakaryocytes. In: Spaet TH (ed) Progress in hemostasis and thrombosis. Grune and Stratton, New York, p 211

    Google Scholar 

  • Ebbe S, Phalen E (1979) Does autoreguladon of megakaryocytopoiesis occur? Blood Cells 5:123–138

    PubMed  CAS  Google Scholar 

  • Ebbe S, Stohlman F Jr, Overcash J, Donovan J (1968) Megakaryocyte size in thrombocytopenic and normal rats. Blood 32:383–392

    PubMed  CAS  Google Scholar 

  • Ebbe S, Adrados C, Phalen E (1985) Independence of megakaryocyte number and size in long-term cultures of normal mouse marrow. Exp Hematol 13:817–820

    PubMed  CAS  Google Scholar 

  • Enomoto K, Kawakita M, Kishimoto S, Katayama N, Miyake T (1980) Thrombopoiesis and megakaryocyte colony stimulating factor in the urine of patients with aplastic anaemia. Br J Haematol 45:551–556

    Article  PubMed  CAS  Google Scholar 

  • Erslev AJ, Caro J, Kansu E, Miller O, Cobbs E (1979) Plasma erythropoietin in polycythemia. Am J Med 66:243–247

    Article  PubMed  CAS  Google Scholar 

  • Erslev AJ, Caro J, Kansu E, Silver R (1980) Renal and extrarenal erythropoietin production in anaemic rats. Br J Haematol 45:65–72

    Article  PubMed  CAS  Google Scholar 

  • Evatt BL, Levin J (1969) Measurement of thrombopoiesis in rabbits using 75selenomethionine. J Clin Invest 48:1615–1626

    Article  PubMed  CAS  Google Scholar 

  • Evatt BL, Shreiner DP, Levin J (1974) Thrombopoietic activity of fractions of rabbit plasma: studies in rabbits and mice. J Lab Clin Med 83:364–371

    PubMed  CAS  Google Scholar 

  • Evatt BL, Spivak JL, Levin J (1976) Relationships between thrombopoiesis and erythropoiesis: with studies of the effects of preparations of thrombopoietin and erythropoietin. Blood 48:547–558

    PubMed  CAS  Google Scholar 

  • Evatt BL, Levin J, Algazy KM (1979) Partial purification of thrombopoietin from the plasma of thrombocytopenic rabbits. Blood 54:377–388

    PubMed  CAS  Google Scholar 

  • Eyster ME, Saletan SL, Rabellino EM, Karanas A, McDonald TP, Locke LA, Luderer JR (1986) Familial essential thrombocythemia. Am J Med 80:497–502

    Article  PubMed  CAS  Google Scholar 

  • Fraser JK, Tan AS, Lin F-K, Berridge MV (1987) Erythropoietin receptors on megakaryocytes. Exp Hematol 15:496 (abstr)

    Google Scholar 

  • Freedman MH, McDonald TP, Saunders EF (1981) Differentiation of murine marrow megakaryocyte progenitors (CFUm): humoral control in vitro. Cell Tissue Kinet 14:53–58

    PubMed  CAS  Google Scholar 

  • Gafter U, Bessler H, Malachi T, Zevin D, Djaldetti M, Levi J (1987) Platelet count and thrombopoietic activity in patients with chronic renal failure. Nephron 45:207–210

    Article  PubMed  CAS  Google Scholar 

  • Ganser A, Carlo-Stella C, Greher J, Volkers B, Hoelzer D (1987) Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells. Blood 70:1173–1179

    PubMed  CAS  Google Scholar 

  • Gewirtz AM (1986) Human megakaryocytopoiesis. Semin Hematol 23:27–42

    PubMed  CAS  Google Scholar 

  • Grant BW, Nichols WL, Solberg LA, Yachimiak DJ, Mann KG (1987) Quantitation of human in vitro megakaryocytopoiesis by radioimmunoassay. Blood 69: 1334–1339

    PubMed  CAS  Google Scholar 

  • Greenberg SM, Kuter DJ, Rosenberg RD (1987) In vitro stimulation of megakaryocyte maturation by megakaryocyte stimulatory factor. J Biol Chem 262:3269–3277

    PubMed  CAS  Google Scholar 

  • Grossi A, Vannucchi AM, Rafanelli D, Ferrini PR (1987) Biological characterization of partially purified human urinary thrombopoietin. Haematologica 72:291–295

    PubMed  CAS  Google Scholar 

  • Harker LA (1968) Megakaryocyte quantitation. J Clin Invest 47:452–457

    Article  PubMed  CAS  Google Scholar 

  • Hill R, Levin J (1986) Partial purification of thrombopoietin using lectin chromatography. Exp Hematol 14:752–759

    PubMed  CAS  Google Scholar 

  • Hirsh EH, Vogler WR, McDonald TP, Stein SF (1980) Acquired hypomegakaryocytic thrombocytopenic purpura: occurrence in a patient with absent thrombopoietic stimulating factor. Arch Intern Med 140:721–723

    Article  PubMed  CAS  Google Scholar 

  • Hoffman R, Mazur E, Bruno E, Floyd V (1981) Assay of an activity in the serum of patients with disorders of thrombopoiesis that stimulates formation of megakaryocytic colonies. N Engl J Med 305:533–538

    Article  PubMed  CAS  Google Scholar 

  • Hoffman R, Yang HH, Bruno E, Straneva JE (1985) Purification and partial characterization of a megakaryocyte colony-stimulating factor from human plasma. J Clin Invest 75:1174–1182

    Article  PubMed  CAS  Google Scholar 

  • Hoffman R, Straneva J, Yang H, Bruno E, Brandt J, Lu L, Geissler D (1986) Humoral regulation of cellular events occurring during megakaryocytopoiesis. Exp Hematol 14:417 (abstr)

    Google Scholar 

  • Iscove NN, Roitsch CA, Williams N, Guilbert LJ (1982) Molecules stimulating early red cell, granulocyte, macrophage and megakaryocyte precursors in culture: similarity in size, hydrophobicity and charge. J Cell Physiol [Suppl] 1: 67–78

    Google Scholar 

  • Ishibashi T, Burstein SA (1986) Interleukin 3 promotes the differendadon of isolated single megakaryocytes. Blood 67:1512–1514

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Koziol JA, Burstein SA (1987) Human recombinant erythropoietin promotes differendadon of murine megakaryocytes in vitro. J Clin Invest 79: 286–289

    Article  PubMed  CAS  Google Scholar 

  • Jackson CW (1973) Cholinesterase as a possible marker for early cells of the megakaryocyte series. Blood 42:413–421

    PubMed  CAS  Google Scholar 

  • Jackson CW, Edwards CC (1977) Biphasic thrombopoietic response to severe hypobaric hypoxia. Br J Haematol 35:233–244

    Article  PubMed  CAS  Google Scholar 

  • Jackson CW, Simone JV, Edwards CC (1974) The reladonship of anemia and thrombocytosis. J Lab Clin Med 84:357–368

    PubMed  CAS  Google Scholar 

  • Johnson CA, Abildgaard CF, Schulman I (1971) Funcdonal studies of young versus old platelets in a padent with chronic thrombocytopenia. Blood 37:163–171

    Google Scholar 

  • Kalmaz GD, McDonald TP (1981a) Effects of andplatelet serum and thrombopoiedn on the percentage of small acetylcholinesterase-posidve cells in bone marrow of mice. Exp Hematol 9:1002–1010

    PubMed  CAS  Google Scholar 

  • Kalmaz GD, McDonald TP (1981b) The effects of thrombopoiedn on megakaryocytopoiesis of mouse bone marrow cells in vitro. In: Evatt B, Levine R, Williams N (eds) Megakaryocyte biology and precursors: in vitro cloning and cellular properdes. Elsevier North Holland, New York, p 77

    Google Scholar 

  • Kalmaz GD, McDonald TP (1982) Assay for thrombopoietin: a new, more sensitive method based on measurement of the small acetylcholinesterase-positive cell. Proc Soc Exp Biol Med 170:213–219

    PubMed  CAS  Google Scholar 

  • Kalmaz GD, McDonald TP (1985) Effect of thrombopoiedn on in vitro producdon of megakaryocytes from fetal mouse liver cells. Proc Soc Exp Biol Med 180: 50–56

    PubMed  CAS  Google Scholar 

  • Kalmaz GD, Kumakawa N, Kumakawa T, McDonald TP, Bessman JD (1987) Effects of neosdgmine on in vitro production of megakaryocytes from fetal mouse liver cells. Exp Hematol 15:493 (abstr)

    Google Scholar 

  • Kawakita M, Miyake T, Kishimoto S, Ogawa M (1982) Apparent heterogeneity of human megakaryocyte colony and thrombopoiesis-stimulating factors: studies on urinary extracts from patients with aplastic anemia and idiopathic thrombocytopenic purpura. Br J Haematol 52:429–438

    Article  PubMed  CAS  Google Scholar 

  • Kelemen E, Cserhati I, Tanos B (1958) Demonstradon and some properties of human thrombopoiedn in thrombocythemic sera. Acta Haematol (Basel) 20: 350–355

    Article  CAS  Google Scholar 

  • Keller KL, Rolovic Z, Evatt BL, Sewell ET, Ramsey RB (1988) The effects of thrombopoietic activity of rabbit plasma fractions on megakaryocytopoiesis in agar cultures. Exp Hematol 16:262–267

    Google Scholar 

  • Kimura H, Burstein SA, Thorning D, Powell JS, Harker LA, Fialkow PJ, Adamson JW (1984) Human megakaryocytic progenitors (CFU-M) assaying in methylcellulose: physical characteristics and requirements for growth. J Cell Physiol 118:87–96

    Article  PubMed  CAS  Google Scholar 

  • Klener P, Marcibal O, Donner L, Kornalik F (1977) Serum thrombopoietic activity following administradon of vinblastine. Scand J Haematol 19:287–292

    Article  PubMed  CAS  Google Scholar 

  • Krizsa F (1971) Study on the development of posthaemorrhagic thrombocytosis in rats. Acta Haematol (Basel) 46:228–231

    Article  CAS  Google Scholar 

  • Langdon JR, McDonald TP (1977) Effects of chronic hypoxia on platelet production in mice. Exp Hematol 5:191–198

    PubMed  CAS  Google Scholar 

  • Layendecker SJ, McDonald TP (1982) The reladve roles of the spleen and bone marrow in platelet producdon in mice. Exp Hematol 10:332–342

    PubMed  CAS  Google Scholar 

  • Lepore DA, Harris RA, Penington DG (1984) Megakaryoblast precursors in rodent bone marrow: specificity of acetylcholinesterase staining. Br J Haematol 58: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Leven RM, Yee MK (1987) Megakaryocyte morphogenesis stimulated in vitro by whole and partially fractioned thrombocytopenic plasma: a model system for the study of platelet formadon. Blood 69:1046–1052

    PubMed  CAS  Google Scholar 

  • Levin J (1983) Murine megakaryocytopoiesis in vitro: an analysis of culture systems used for the study of megakaryocyte colony-forming cells and of the characteristics of megakaryocyte colonies. Blood 61:617–623

    PubMed  CAS  Google Scholar 

  • Levin J, Evatt BL (1979) Humoral Control of thrombopoiesis. Blood Cells 5:105–121

    PubMed  CAS  Google Scholar 

  • Levin J, Levin FC, Hull DF III, Penington DG (1982) The effects of thrombopoietin on megakaryocyte-CFC, megakaryocytes, and thrombopoiesis: with studies of ploidy and platelet size. Blood 60:989–998

    PubMed  CAS  Google Scholar 

  • Levine RF, Hazzard KC, Lamberg JD (1982) The significance of megakaryocyte size. Blood 60:1122–1131

    PubMed  CAS  Google Scholar 

  • Long MW, Henry RL (1979) Thrombocytosis-induced suppression of small acetylcholinesterase-positive cells in bone marrow of rats. Blood 54:1338–1346

    Google Scholar 

  • Long MW, Williams N, Ebbe S (1982a) Immature megakaryocytes in the mouse: physical characterisdcs, cell cycle status, and in vitro responsiveness to thrombocytopoietic sdmulatory factor. Blood 59:569–575

    PubMed  CAS  Google Scholar 

  • Long MW, Williams N, McDonald TP (1982b) Immature megakaryocytes in the mouse: in vitro relationship to megakaryocyte progenitor cells and mature megakaryocytes. J Cell Physiol 112:339–344

    Article  PubMed  CAS  Google Scholar 

  • Mazur EM (1987) Megakaryocytopoiesis and platelet production: a review. Exp Hematol 15:340–350

    PubMed  CAS  Google Scholar 

  • Mazur EM, South K (1985) Human megakaryocyte colony-sdmulating factor in sera from aplastic dogs: partial purification, characterization and determination of hematopoietic cell lineage specificity. Exp Hematol 13:1164–1172

    PubMed  CAS  Google Scholar 

  • Mazur EM, Cohen JL, Wong GG, Clark SC (1987) Modest stimulatory effect of recombinant human GM-CSF on colony growth from peripheral blood human megakaryocyte progenitor cells. Exp Hematol 15:1128–1133

    PubMed  CAS  Google Scholar 

  • McClure PD, Choi SI (1968) Thrombopoietin and erythropoietin levels in idiopathic thrombocytopenic purpura and iron-deficiency anaemia. Br J Haematol 15: 351–354

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1973a) The hemaggludnadon-inhibidon assay for thrombopoietin. Blood 41:219–233

    PubMed  CAS  Google Scholar 

  • McDonald TP (1973b) Bioassay for thrombopoietin utilizing mice in rebound-thrombocytosis. Proc Soc Exp Biol Med 144:1006–1012

    PubMed  CAS  Google Scholar 

  • McDonald TP (1973c) Regulation of thrombopoiesis. Medicina 33:459–466

    PubMed  CAS  Google Scholar 

  • McDonald TP (1974a) Immunological studies of thrombopoietin. Proc Soc Exp Biol Med 147:513–518

    PubMed  CAS  Google Scholar 

  • McDonald TP (1974b) Immunoassay and bioassay for thrombopoiedn. In: Baldini MG, Ebbe S (eds) Platelets: producdon, funcdon, transfusion, and storage. Grune and Stratton, New York, p 81

    Google Scholar 

  • McDonald TP (1975) Assay of thrombopoietin utilizing human sera and urine fractions. Biochem Med 13:101–110

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1976a) A comparison of platelet size, platelet count, and platelet 75Sincorporadon as assays for thrombopoiedn. Br J Haematol 34:257–267

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1976b) Role of the kidneys in thrombopoietin production. Exp Hematol 4:27–31

    PubMed  CAS  Google Scholar 

  • McDonald TP (1977a) Annotation: assays for thrombopoietin. Scand J Haematol 18:5–12

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1977b) Effects of different routes of administration and injecdon schedules of thrombopoietin on 75S incorporation into platelets of assay mice. Proc Soc Exp Biol Med 155:4–7

    PubMed  CAS  Google Scholar 

  • McDonald TP (1978a) Platelet producdon in hypoxic and RBC-transfused mice. Scand J Haematol 20:213–220

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1978b) A comparison of platelet production in mice made thrombocytopenic by hypoxia and by platelet specific antisera. Br J Haematol 40:299–309

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1978c) Neutralizing antiserum to thrombopoietin. Proc Soc Exp Biol Med 158:557–560

    PubMed  CAS  Google Scholar 

  • McDonald TP (1980) Effect of thrombopoietin on platelet size of mice. Exp Hematol 8:527–532

    PubMed  CAS  Google Scholar 

  • McDonald TP (1981a) Annotation: assay and site of production of thrombopoietin. Br J Haematol 49:493–499

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1981b) Thrombopoietin and its control of thrombocytopoiesis and megakaryocytopoiesis. In: Evatt B, Levine R, Williams N (eds) Megakaryocyte biology and precursors: in vitro cloning and cellular properties. Elsevier North Holland, New York, p 39

    Google Scholar 

  • McDonald TP (1987) Regulation of megakaryocytopoiesis by thrombopoietin. Ann NY Acad Sci 509:1–24

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP (1988a) Thrombopoietin: its biology, purification, and characterization. Exp Hematol 16:201–205

    PubMed  CAS  Google Scholar 

  • McDonald TP (1988b) Current status of thrombopoietin. In: Tavassoli M, Abraham N, Ascensao E, Zanjani E, Levine A (eds) Molecular biology of hemopoiesis. Plenum, New York, p 245

    Google Scholar 

  • McDonald TP, Clift R (1979) Effects of thrombopoietin and erythropoietin on platelet production in rebound-thrombocytotic and normal mice. Am J Hematol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Green D (1977) Demonstration of thrombopoietin production after plasma infusion in a patient with congenital thrombopoietin deficiency. Thromb Haemost 37:577–579

    PubMed  CAS  Google Scholar 

  • McDonald TP, Kalmaz GD (1983a) Effects of thrombopoietin on the number and diameter of marrow megakaryocytes of mice. Exp Hematol 11:91–97

    PubMed  CAS  Google Scholar 

  • McDonald TP, Kalmaz GD (1983b) Nephrectomy abolishes the increase in small acetylcholinesterase-positive immature rat megakaryocytes induced by acute thrombocytopenia. Proc Soc Exp Biol Med 174:131–136

    PubMed  CAS  Google Scholar 

  • McDonald TP, Nolan C (1979) Partial purification of a thrombopoietic-stimulating factor from kidney cell culture medium. Biochem Med 21:146–155

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Shadduck RK (1982) Comparative effects of thrombopoietin and colony-stimulating factors. Exp Hematol 10:544–550

    PubMed  CAS  Google Scholar 

  • McDonald TP, Lange RD, Congdon CC, Toya RE (1970) Effect of hypoxia, irradiation and bone marrow transplantation on erythropoietin levels in mice. Radiat Res 42:151–163

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Clift R, Lane K (1974) Purification and assay of thrombopoietin. Exp Hematol 2:355–361

    PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Lange RD, Nolan C, Tribby HE, Barlow GH (1975) Thrombopoietin production by human embryonic kidney cells in culture. J Lab Clin Med 85:59–66

    PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Jones JB (1976a) Canine cyclic hematopoiesis: platelet size and thrombopoietin level in relation to platelet count. Proc Soc Exp Biol Med 153:424–428

    PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Nolan C, Tribby HE (1976b) A comparison of mice in rebound-thrombocytosis with platelet-hypertransfused mice for the assay of thrombopoietin. Scand J Haematol 16:326–334

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Clift R (1977a) Hematologic changes and thrombopoietin production in mice after X-irradiation and platelet-specific antisera. Exp Hematol 5:291–298

    PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Nolan C, Walasek O (1977b) Immunologic similarities of thrombopoietin from different sources. Scand J Haematol 18:91–97

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Clift R (1978a) Effects of short-term hypoxia on platelet counts of mice. Blood 51:165–175

    PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Congdon CC, Walasek O, Badow GH (1978b) Stimulation of megakaryocydc spleen colonies in mice by thrombopoietin. Life Sci 22:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Cottrell M (1979a) Assay for thrombopoietin: a comparison of time of isotope incorporation into platelets and the effects of different strains and sexes of mice. Exp Hematol 7:289–296

    PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Clift R (1979b) Effects of hypoxia on thrombocytopoiesis

    Google Scholar 

  • and thrombopoiedn producdon of mice. Proc Soc Exp Biol Med 160:335–339

    Google Scholar 

  • McDonald TP, Andrews RB, Clift R, Cottrell M (1981) Characterization of a thrombocytopoietic-sdmulating factor from kidney cell culture medium. Exp Hematol 9:288–296

    PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell M, Clift R (1985a) Regulation of megakaryocytopoiesis by

    Google Scholar 

  • acetylcholinesterase. Exp Hematol 13:437 (abstr) McDonald TP, Cottrell M, Clift R, Khouri JA, Long MD (1985b) Studies on the purificadon of thrombopoietin from kidney cell culture medium. J Lab Clin Med 106:162–174

    Google Scholar 

  • McDonald TP, Miura M, Koizumi S (1985c) Thrombopoietin production in a patient with chronic thrombocytopenia after plasma infusion. Thromb Res 38:353–359

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Cottrell M (1986a) Monoclonal antibodies to human urinary thrombopoietin. Proc Soc Exp Biol Med 182:151–158

    PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Cottrell M, Long MD (1986b) Further studies on the purificadon and assay of thrombopoietin. In: Levine RF, Williams N, Levin J, Evatt BL (eds) Megakaryocyte development and function. Alan R Liss, New York, p 215

    Google Scholar 

  • McDonald TP, Cullen WC, Cottrell M, Clift R (1986c) Effects of hypoxia on the small acetylcholinesterase-positive megakaryocyte precursor in bone marrow of mice. Proc Soc Exp Biol Med 183:114–117

    PubMed  CAS  Google Scholar 

  • McDonald TP, Clift R, Cottrell M, Long MD (1987a) Recovery of thrombopoietin during purificadon. Biochem Med Metab Biol 37:335–343

    Article  PubMed  CAS  Google Scholar 

  • McDonald TP, Cottrell MB, Clift RE, Cullen WC, Lin FK (1987b) High doses of recombinant erythropoiedn stimulate platelet production in mice. Exp Hematol 15:719–721

    PubMed  CAS  Google Scholar 

  • McDonald TP, Clift RE, Cottrell MB, Long MD (1988) A four-step procedure for a rapid purificadon of thrombopoietin. Exp Hematol 16:488 (abstr)

    Google Scholar 

  • Messner HA, Jamal N, Izaguirre C (1982) The growth of large megakaryocyte colonies from human bone marrow. J Cell Physiol [Suppl] 1:45–51

    Article  CAS  Google Scholar 

  • Metcalf D (1985) The granulocyte-macrophage colony-stimulating factors. Science 229:16–22

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Begley CG, Johnson GR, Nicola NA, Vadas MA, Lopez AF, WilUamson DJ, Wong GG, Clark SC, Wang EA (1986) Biologic properties in vitro of a recombinant human granulocyte-macrophage colony stimulating factor. Blood 67:37–45

    PubMed  CAS  Google Scholar 

  • Miura M, Jackson CW, Lyles SA (1984a) Increases in circuladng megakaryocyte growth-promoting activity in the plasma of rats following whole-body irradiadon. Blood 63:1060–1066

    PubMed  CAS  Google Scholar 

  • Miura M, Koizumi S, Nakamura K, Ohno T, Tachinami T, Yamagami M, Taniguchi N, Kinoshta S, Abildgaard CF (1984b) Efficacy of several plasma components in a young boy with chronic thrombocytopenia and hemolytic anemia who responds repeatedly to normal plasma infusions. Am J Hematol 17:307–319

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Jackson CW, Steward SA (1988) Increase in circulating megakaryocyte growth-promoting activity (meg-GPA) following sublethal irradiation is not related to decreased platelets. Exp Hematol 16:139–144

    PubMed  CAS  Google Scholar 

  • Miyake T, Kawakita M, Enomoto K, Murphy MJ Jr (1982) Partial purification and biological properties of thrombopoietin extracted from the urine of aplastic anemia padents. Stem Cells 2:129–144

    PubMed  CAS  Google Scholar 

  • Naets JP (1958) Erythropoiesis in nephrectomized dogs. Nature 181:1134–1135

    Article  PubMed  CAS  Google Scholar 

  • Naets JP, Wittek M (1968) Erythropoiesis in anephric man. Lancet 1:941–943

    Article  PubMed  CAS  Google Scholar 

  • Nakeff A, Daniels-McQueen S (1976) In vitro colony assay for a new class of megakaryocyte precursor: colony forming unit megakaryocyte (CFU-M). Proc Soc Exp Biol Med 151:587–590

    PubMed  CAS  Google Scholar 

  • Nakeff A, Roozendaal KJ (1975) Thrombopoietin activity in mice following immuneinduced thrombocytopenia. Acta Haematol (Basel) 54:340–344

    Article  CAS  Google Scholar 

  • Nakeff A, Dicke KA, van Noord MJ (1975) Megakaryocytes in agar cultures of mouse bone marrow. Semin Haematol 8:4–21

    CAS  Google Scholar 

  • Nickerson HJ, Silberman TL, McDonald TP (1980) Hepatoblastoma, thrombocytopoiesis, and increased thrombopoietin. Cancer 45:315–317

    Article  PubMed  CAS  Google Scholar 

  • Nicola NA, Johnson GR (1982) The production of committed hemopoietic colony-forming cells from multipotential precursor cells in vitro. Blood 60:1019–1029

    Google Scholar 

  • Odell TT Jr (1974) Megakaryocytopoiesis and its response to stimulation and suppression. In: Baldini MG, Ebbe S (eds) Platelets: production, function, transfusion and storage. Grune and Stratton, New York, p 11

    Google Scholar 

  • Odell TT, Boran DA (1977) The mitotic index of megakaryocytes of mice after acute thrombocytopenia. Proc Soc Exp Biol Med 155:149–151

    PubMed  CAS  Google Scholar 

  • Odell TT Jr, McDonald TP, Detwiler TC (1961) Stimulation of platelet production by serum of platelet-depleted rats. Proc Soc Exp Biol Med 108:428–431

    PubMed  CAS  Google Scholar 

  • Odell TT Jr, McDonald TP, Asano M (1962) Response of rat megakaryocytes and platelets to bleeding. Acta Haematol (Basel) 27:171–179

    Article  Google Scholar 

  • Odell TT, McDonald TP, Shelton C, Clift R (1979) Stimulation of mouse megakaryocyte endomitosis by plasma from thrombocytopenic rats. Proc Soc Exp Biol Med 160:263–265

    PubMed  CAS  Google Scholar 

  • Ogle JW, Dunn CDR, McDonald TP, Lange RD (1978) The in vitro production of erythropoietin and thrombopoietin. Scand J Haematol 21:188–196

    Article  PubMed  CAS  Google Scholar 

  • Oon SH, Williams N (1987) Immature megakaryocytes in the mouse: synergistic response to megakaryocyte potentiator, thrombopoietic stimulatory factor and interleukin 3. Leukemia 1:772–776

    PubMed  CAS  Google Scholar 

  • Paulus JM, Maigne J, Keyhani E (1981) Mouse megakaryocytes secrete acetylcholinesterase. Blood 58:1100–1106

    PubMed  CAS  Google Scholar 

  • Penington DG (1970) Isotope bioassay for “thrombopoietin”. Br Med J 1:606–608

    Article  PubMed  CAS  Google Scholar 

  • Petursson SR, Chervenick PA (1987) Effects of hypoxia on megakaryocytopoiesis and granulopoiesis. Eur J Haematol 39:267–273

    Article  PubMed  CAS  Google Scholar 

  • Pinto MR, King MA, Goss GD, Bezwoda WR, Fernandes-Costa F, Mendelow B, McDonald TP, Dowdle E, Bernstein R (1985) Acute megakaryoblasic leukaemia with 3q inversion and elevated thrombopoietin (TSF): an autocrine role for TSF? Br J Haematol 61:687–694

    Article  PubMed  CAS  Google Scholar 

  • Puschmann M, Thorn W, Yen Y (1978) Partial purification procedure for human urinary erythropoietin by preparative isotachophoresis. Res Exp Med (Berl) 173:293–296

    Article  CAS  Google Scholar 

  • Quesenberry PJ, Ihle JN, McGrath E (1985) The effect of interleukin 3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation. Blood 65: 214–217

    PubMed  CAS  Google Scholar 

  • Raha S, Wesemann W, McDonald TP (1985) Isolation of mouse megakaryocytes: 1. Separation of two fractions enriched in different maturational stages. Eur J Cell Biol 37:111–116

    PubMed  CAS  Google Scholar 

  • Rath CE, Mailliard JA, Schreiner GE (1957) Bleeding tendency in uremia. N Engl J Med 257:808–811

    Article  PubMed  CAS  Google Scholar 

  • Robinson BE, McGrath HE, Quesenberry PJ (1987) Recombinant murine granulocyte macrophage colony-stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin 3. J Clin Invest 79:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Schulman I, Pierce M, Lukens A, Currimbhoy Z (1960) Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production: chronic thrombocytopenia due to its deficiency. Blood 16:943–957

    PubMed  CAS  Google Scholar 

  • Schulman I, Abildgaard CF, Cornet JA, Simone JV, Currimbhoy Z (1965) Studies on thrombopoiesis. II. Assay of human plasma thrombopoietic activity. J Pediatr 66:604–612

    Article  PubMed  CAS  Google Scholar 

  • Shreiner DP, Weinberg J, Enoch D (1980) Plasma thrombopoiedc acdvity in humans with normal and abnormal platelet counts. Blood 56:183–188

    PubMed  CAS  Google Scholar 

  • Sieff CA (1987) Hematopoietic growth factors. J Clin Invest 79:1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Sparrow R, Swee-Huat D, Williams N (1987) Haemopoiedc growth factors stimuladng murine megakaryocytopoiesis: interleukin-3 is immunologically distinct from megakaryocyte-potendator. Leuk Res 2:31–36

    Article  Google Scholar 

  • Spector B (1961) In vivo transfer of a thrombopoietic factor. Proc Soc Exp Biol Med 108:146–149

    PubMed  CAS  Google Scholar 

  • Straneva JE, Yang HH, Hui SL, Bruno E, Hoffman R (1987) Effects of megakaryocyte colony-stimulating factor on terminal cytoplasmic maturation of human megakaryocytes. Exp Hematol 15:657–663

    PubMed  CAS  Google Scholar 

  • Straneva JE, Briddell RA, McDonald TP, Yang HH (1988) Thrombocytopoiesis stimulating factor (TSF) in aplastic anemia serum accelerates cytoplasmic maturadon of human megakaryocytes. Exp Hematol 16:513 (abstr)

    Google Scholar 

  • Tayrien G, Rosenberg RD (1987) Purification and properties of a megakaryocyte sdmulatory factor present both in the serum-free conditioned medium of human embryonic kidney cells and in thrombocytopenic plasma. J Biol Chem 262: 3262–3268

    PubMed  CAS  Google Scholar 

  • Vainchenker W, Guichard J, Breton-Gorius J (1979) Growth of human megakaryocyte colonies in culture from fetal, neonatal, and adult peripheral blood cells: ultrastructural analysis. Blood Cells 5:25–42

    PubMed  CAS  Google Scholar 

  • Vainchenker W, Chapman J, Deschamps JF, Vinci G, Bouguet J, Titeux M, Breton-Gorius J (1982) Normal human serum contains a factor(s) capable of inhibiting megakaryocyte colony formadon. Exp Hematol 10:650–660

    PubMed  CAS  Google Scholar 

  • Vannucchi AM, Grossi A, Rafanelli D, Dilollo S, Bertani C, Ferrini PR (1986) Pardal purificadon of a thrombopoiedc sdmuladng activity from human urine. In: Levine RF, Williams N, Levin J, Evatt BL (eds) Megakaryocyte development and function. Alan R Liss, New York, p 221

    Google Scholar 

  • Vannucchi AM, Grossi A, Rafanelli D, Ferrini PR, Ramponi G (1988) Pardal purificadon and biochemical characterization of human plasma thrombopoietin. Leukemia 2:236–240

    PubMed  CAS  Google Scholar 

  • Weiner M, Karpatkin S (1972) Use of the megathrombocyte to demonstrate thrombopoietin. Thromb Diath Haemorrh 28:24–30

    PubMed  CAS  Google Scholar 

  • Weintraub AH, Karpatkin S (1974) Heterogeneity of rabbit platelets. IL Use of the megathrombocyte to demonstrate a thrombopoiedc stimulus. J Lab Clin Med 83:896–901

    PubMed  CAS  Google Scholar 

  • Williams N, Levine RF (1982) The origin, development and regulation of megakaryocytes. Br J Haematol 52:173–180

    Article  PubMed  CAS  Google Scholar 

  • Williams N, McDonald TP, Rabellino EM (1979) Maturadon and regulation of megakaryocytopoiesis. Blood Cells 5:43–55

    PubMed  CAS  Google Scholar 

  • Williams N, Eger RR, Jackson HM, Nelson DJ (1982) Two-factor requirement for murine megakaryocyte colony formation. J Cell Physiol 110:101–104

    Article  PubMed  CAS  Google Scholar 

  • Williams N, Jackson H, Iscove NN, Dukes PP (1984) The role of erythropoietin, thrombopoietic sdmulating factor, and myeloid colony-stimulating factors on murine megakaryocyte colony formadon. Exp Hematol 12:734–740

    PubMed  CAS  Google Scholar 

  • Williams N, Sparrow R, Gill K, Yasmeen D, McNiece I (1985) Murine megakaryocyte colony sdmulating factor: its relationship to interleukin 3. Leuk Res 9: 1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S (1957) Mechanism of the development of thrombocytosis due to bleeding. Acta Haematol (Jpn) 20:163–178

    Google Scholar 

  • Yang HH, Bruno E, Hoffman R (1986) Studies of human megakaryocytopoiesis using an anti-megakaryocyte colony-stimulating factor antiserum. J Clin Invest 77:1873–1880

    Article  PubMed  CAS  Google Scholar 

  • Zucah JR, McDonald TP, Gruber DF, Mirand EA (1977) Erythropoietin, thrombopoietin, and colony stimulating factor in fetal mouse liver culture media. Exp Hematol 5:385–391

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDonald, T.P. (1992). Humoral Control of Thrombocytopoiesis. In: Fisher, J.W. (eds) Biochemical Pharmacology of Blood and Bloodforming Organs. Handbook of Experimental Pharmacology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75865-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75865-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75867-6

  • Online ISBN: 978-3-642-75865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics