Skip to main content

The Mechanism of Action of Erythropoietin: Erythroid Cell Response

  • Chapter
Biochemical Pharmacology of Blood and Bloodforming Organs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 101))

Abstract

Erythropoiesis is regulated by erythropoietin (Ep), a glycoprotein hormone produced in the kidneys and to a lesser extent in the liver, which promotes the proliferation and differentiation of committed erythroid progenitor cells. Ep is not the only growth factor which interacts with erythroid progenitor cells, but it is the most important, and a lack of it is associated clinically with severe anemia, while in vitro, erythroid progenitor cells cannot survive without it. Ep is unique amongst hematopoietic growth factors for several reasons. It was the first one to be identified (Reissmann 1956) and the only one which fits the definition of a hormone. In contrast to the other hematopoietic growth factors, Ep was not initially recognized as a colony stimulating factor and has no influence on the behavior of the mature progeny of its target cells. With perhaps the exception of macrophage colony stimulating factor (CSF-1), Ep is more restricted in its progenitor cell nteractions than any other hematopoietic growth factor. Interestingly, Ep also shares in common with CSF-1 and granulocyte colony stimulating factor (G-CSF) the expression of its receptors by cells of placental origin (Muller et al. 1983; Rettenmier et al. 1986; Koury et al. 1988; Uzumaki et al. 1989). Although the reason for placental expression is unknown, it is noteworthy that the CSF-1 receptor is the product of the c-fms protooncogene (Sherr et al. 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbrecht PH, Littell JK (1972) Plasma erythropoietin in men and mice during acclimatization to different altitudes. J Appi Physiol 32:54–58

    CAS  Google Scholar 

  • Adamson JW et al. (1980) Polycythemia vera: further in vitro studies of hematopoietic regulation. J Clin Invest 66:1363–1368

    PubMed  CAS  Google Scholar 

  • Affara N et al. (1983) Patterns of expression of erythroblast non-globin mRNAs. Nucl Acids Res 11:931–945

    PubMed  CAS  Google Scholar 

  • Akahane K et al. (1987) Pure erythropoietic colony and burst formations in serum-free culture and their enhancement by insulin-like growth factor L Exp Hematol 15:797–802

    CAS  Google Scholar 

  • Akahane K et al. (1989) Binding of iodinated erythroopietin to rat bone marrow cells under normal and anemic conditions. Exp Hematol 17:177–182

    PubMed  CAS  Google Scholar 

  • Alexanian R et al. (1967) Erythropoietin excretion in man following androgens. J Lab Clin Med 70:777–785

    PubMed  CAS  Google Scholar 

  • Anagnostou A et al. (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci 87:5978–5982

    PubMed  CAS  Google Scholar 

  • Anderson SM et al. (1985) A murine recombinant retrovirus containing the src oncogene transforms erythroid precursor cells in vitro. Molec Cell Biol 5: 3369–3375

    PubMed  CAS  Google Scholar 

  • Atkins H, Broudy VC (1989) The structure of the erythropoietin receptor by ligand blotting. Blood 74:5a

    Google Scholar 

  • Axelrad A A et al. (1974) Properties of cells that produce erythrocytic colonies in vitro. In: Robinson W (ed) Hemopoiesis in culture. US Government Printing Office, Washington DC, pp 226–234

    Google Scholar 

  • Aye MT (1977) Erythroid colony formation in cultures of human marrow: effect of leukocyte conditioned medium. J Cell Physiol 91:69–78

    PubMed  CAS  Google Scholar 

  • Badiavas EV et al. (1989) An in vivo analysis of c-myc and c-fos expression during terminal erythroid differentiation in mouse spleen progenitors. Int J Cell Cloning 7:179–189

    PubMed  CAS  Google Scholar 

  • Bailey SC et al. (1990) Identification of the native erythropoietin receptor and higher molecular weight related proteins using anti-peptide antibodies. Blood 76:131a

    Google Scholar 

  • Barnhart KM et al. (1989) Purification and characterization of an erythroid cell-specific factor that binds the murine a-and B-globin genes. Mol Cell Biol 9:2606–2614

    PubMed  CAS  Google Scholar 

  • Bartocci A et al. (1987) Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci 84:6179–6183

    PubMed  CAS  Google Scholar 

  • Bazan JF (1989) A novel family of growth factor receptors. Biochem Biophys Res Commun 164:788–796

    PubMed  CAS  Google Scholar 

  • Beckman BS et al. (1987) The action of erythropoietin is mediated by lipoxygenase metabolites in murine fetal liver cells. Biochem Biophys Res Comm 147: 392–398

    PubMed  CAS  Google Scholar 

  • Bedard DL, Goldwasser E (1976) On the mechanism of erythropoietin-induced differentiation. XV. Induced transcription restricted by cytosine arabinoside. Exp Cell Res 102:376–384

    PubMed  CAS  Google Scholar 

  • Behringer RR, Dewey MJ (1985) Cellular site and mode of Fv-2 gene action. Cell 40:441–447

    PubMed  CAS  Google Scholar 

  • Bering HA et al. (1984) Proto-oncogene expression during erythroid proliferation. CUn Res 32:304a

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Berridge MV et al. (1988) Effects of recombinant human erythropoietin on megakaryocytes and on platelet production in the rat. Blood 72:970–977

    PubMed  CAS  Google Scholar 

  • Beru N, Goldwasser E (1985) The regulation of heme biosynthesis during erythropoietin-induced erythroid differentiation. J Biol Chem 260:9251–9257

    PubMed  CAS  Google Scholar 

  • Beru N et al. (1990) Evidence suggesting negative regulation of the erythropoietin gene by ribonucleoprotein. J Biol Chem 265:14100–14104

    PubMed  CAS  Google Scholar 

  • Beverley PCL et al. (1980) Isolation of human haematopoietic progenitor cells using monoclonal antibodies. Nature 287:332–333

    PubMed  CAS  Google Scholar 

  • Billat C et al. (1981) Binding of glucocorticosteroids to hepatic erythropoietic cells of the rat fetus. J Endocrinol 89:307–315

    PubMed  CAS  Google Scholar 

  • Billat CL et al. (1982) In vitro and in vivo regulation of hepatic erythropoiesis by erythropoietin and glucocorticoids in the rat fetus. Exp Hematol 10:133–140

    PubMed  CAS  Google Scholar 

  • Bishop TR et al. (1987) Gene expression during CFU-E maturation differs from expression during Friend cell induction. Blood 70:148a

    Google Scholar 

  • Bishop TR et al. (1990) Effects of erythropoietin on DNA stability and induction of B-globin gene transcription in murine CFU-E. Blood 76:84a

    Google Scholar 

  • Bonanou-Tzedaki SA et al. (1981) Regulation of erythroid cell differentiation by haemin. Cell Diff 10:267–279

    CAS  Google Scholar 

  • Bonanou-Tzedaki SA et al. (1986) Stimulation of the adenylate cyclase activity of rabbit bone marrow immature erythroblasts by erythropoietin and haemin. Eur J Biochem 155:363–370

    PubMed  CAS  Google Scholar 

  • Bonanou-Tzedaki SA et al. (1987) The role of cAMP and calcium in the stimulation of proliferation of immature erythroblasts by erythropoietin. Exp Cell Res 170:276–289

    PubMed  CAS  Google Scholar 

  • Bondurant MC et al. (1985) Control of globin gene transcription by erythropoietin in erythroblasts from Friend virus-infected mice. Mol Cell Biol 5:675–683

    PubMed  CAS  Google Scholar 

  • Bondurant MC, Koury MJ (1988) Three proteins in mouse erythroblasts bind to the 5’-CACACCC-3’ sequence of the B major globin gene promoter. Blood 72:80a

    Google Scholar 

  • Borsook H et al. (1969) Studies on erythropoiesis: II. A method of segregating immature from mature adult rabbit erythroblasts. Blood 34:32–41

    PubMed  CAS  Google Scholar 

  • Boussios T, Bertles JF (1987) Receptors specific for erythropoietin on yolk-sac erythroid cells. In: Developmental control of globin gene expression. Alan R, New York, pp 35–41

    Google Scholar 

  • Boussios T, Bertles JF (1989) Erythropoietin: receptor characteristics during the ontogeny of hamster yolk sac erythroid cells. J Biol Chem 264:16017–16021

    PubMed  CAS  Google Scholar 

  • Boyer SH et al. (1987) Patterns of differential gene expression during maturation of erythroid colony forming units. In: Developmental control of globin gene expression. Alan R, New York, pp 43–54

    Google Scholar 

  • Branch DR et al. (1987) Identification of an erythropoietin-sensitive cell line. Blood 69:1782–1785

    PubMed  CAS  Google Scholar 

  • Broudy VC et al. (1988) Identification of the receptor for erythropoietin on human and murine erythroleukemia cells and modulation by phorbol ester and dimethyl sulfoxide. Proc Natl Acad Sci 85:6513–6517

    PubMed  CAS  Google Scholar 

  • Broudy VC et al. (1990) Dynamics of erythropoietin receptor expression on erythropoietin-responsive murine cell lines. Blood 75:1622–1626

    PubMed  CAS  Google Scholar 

  • Brown JE, Adamson JW (1977a) Studies of the influence of cyclic nucleotides on in vitro haemoglobin synthesis. Brit J Haematol 35:193–208

    CAS  Google Scholar 

  • Brown JE, Adamson JW (1977b) Modulation of in vitro erythropoiesis. The influence of B-adrenergic agonists on erythroid colony formation. J Clin Invest 60:70–77

    PubMed  CAS  Google Scholar 

  • Brox AG, Congote LF (1989) Identification and characterization of an 8-kd peptide stimulating late erythropoiesis. Exp Hematol 17:769–773

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE et al. (1988) Selective and indirect modulation of human multi-potential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci 85:9052–9056

    PubMed  CAS  Google Scholar 

  • Bruce WR, McCulloch EA (1964) The effect of erythropoietic stimulation on the hemopoietic colony-forming cells of mice. Blood 23:216–232

    PubMed  CAS  Google Scholar 

  • Bruno E et al. (1988) Effect of recombinant and purified hematopoietic growth factors on human megakaryocyte colony formation. Exp Hematol 16:371–377

    PubMed  CAS  Google Scholar 

  • Byron JW (1977) Analysis of receptor mechanisms involved in the hemopoietic effects of androgens: use of the Tfm mutant. Exp Hematol 5:429–435

    PubMed  CAS  Google Scholar 

  • Carroll MP et al. (1990) Interleukin-3 and granulocyte-macrophage colony-stimulating mediate rapid phosphorylation and activation of cytosolic c-raf. J Biol Chem 265:19812–19817

    PubMed  CAS  Google Scholar 

  • Carroll MP et al. (1991) Erythropoietin induces raf-1 activation and raf-1 is required for erythropoietin-mediated proliferation. J Biol Chem: 269: 14964–14968

    Google Scholar 

  • Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263:2577–2580

    PubMed  CAS  Google Scholar 

  • Caubet JF et al. (1989) Expression of the c-fos protooncogene by human and murine erythroblasts. Blood 74:947–951

    PubMed  CAS  Google Scholar 

  • Chan HSL et al. (1980) Modulation of human hematopoiesis by prostaglandins and lithium. J Lab Clin Med 95:125–132

    PubMed  CAS  Google Scholar 

  • Chang SCS et al. (1974) Evidence for an erythropoietin receptor protein on rat bone marrow cells. Biochem Biophys Res Comm 57:399–405

    PubMed  CAS  Google Scholar 

  • Chang CS, Goldwasser E (1973) On the mechanism of erythropoietin-induced differentiation: XIL A cytoplasmic protein mediating induced nuclear RNA synthesis. Develop Biol 34:246–254

    PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    PubMed  CAS  Google Scholar 

  • Chiuini F et al. (1979) Early increase of cyclic adenosine monophosphate level induced by erythropoietin on rabbit bone marrow cell suspensions. Acta Haematol 61:251–257

    PubMed  CAS  Google Scholar 

  • Choi HS et al. (1987) Erythropoietin rapidly alters phosphorylation of pp43, an erythroid membrane protein. J Biol Chem 262:2933–2936

    PubMed  CAS  Google Scholar 

  • Christensen RD et al. (1989) Down-modulation of neutrophil production by erythropoietin in human hematopoietic clones. Blood 74:817–822

    PubMed  CAS  Google Scholar 

  • Clark SC, Kamen R (1987) The human hematopoietic colony-stimulating factors. Science 236:1229–1237

    PubMed  CAS  Google Scholar 

  • Clarke BJ, Housman D (1977) Characterization of an erythroid precursor cell of high proliferative capacity in normal human peripheral blood. Proc Natl Acad Sci 74:1105–1109

    PubMed  CAS  Google Scholar 

  • Claustres M et al. (1987) Insulin-like growth factor I stimulates human erythroid colony formation in vitro. J Clin Endocrinol Metab 65:78–82

    PubMed  CAS  Google Scholar 

  • Clissold PM (1974) Differentiation studies on separated rabbit early erythroid cells. Exp Cell Res 89:389–398

    PubMed  CAS  Google Scholar 

  • Congote LF (1983) Isolation of two biologically active peptides, erythrotropin I and erythrotropin II from fetal calf intestine. Biochem Biophys Res Comm 115: 477–483

    PubMed  CAS  Google Scholar 

  • Congote LF (1987) Effects of insulin-like growth factor I, platelet-derived growth factor, fibroblast growth factor, and transforming growth factor-beta on thymidine incorporation into fetal liver cells. Exp Hematol 15:936–941

    PubMed  CAS  Google Scholar 

  • Congote LF et al. (1974) Hormone control of heme synthesis in cultures of human fetal liver cells. Biochemistry 13:4255–4263

    PubMed  CAS  Google Scholar 

  • Cook WD et al. (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41:677–683

    PubMed  CAS  Google Scholar 

  • Corey CA et al. (1990) Erythropoiesis in murine long-term marrow cultures following transfer of the erythropoietin cDNA into marrow stromal cells. Exp Hematol 18:201–204

    PubMed  CAS  Google Scholar 

  • Cormack D (1976) Time-lapse characterization of erythrocytic colony-forming cells in plasma cultures. Exp Hemat 4:319–327

    PubMed  CAS  Google Scholar 

  • Cosman D et al. (1990) A new cytokine receptor superfamily. Trends Biochem Sci 15:265–269

    PubMed  CAS  Google Scholar 

  • Dainiak N, Kreczko S (1985) Interactions of insulin, insulinhke growth factor II, and platelet-derived growth factor in erythropoietic culture. J Clin Invest 76: 1237–1242

    PubMed  CAS  Google Scholar 

  • Dainiak N et al. (1978) Potentiation of human erythropoiesis in vitro by thyroid hormone. Nature 272:260–262

    PubMed  CAS  Google Scholar 

  • Dainiak N et al. (1983) Platelet-derived growth factor promotes proliferation of erythropoietic progenitor cells in vitro. J Clin Invest 71:1206–1214

    PubMed  CAS  Google Scholar 

  • Dainiak N et al. (1986) L-triiodothyronine augments erythropoietic growth factor release from peripheral blood and bone marrow leukocytes. Blood 68: 1289–1297

    PubMed  CAS  Google Scholar 

  • D’Andrea A, Zon LI (1990) Erythropoietin receptor: subunit structure and activation. J Clin Invest 86:681–687

    PubMed  Google Scholar 

  • D’Andrea AD et al. (1989) Expression cloning of the murine erythropoietin receptor. Cell 57:277–285

    PubMed  Google Scholar 

  • D’Andrea AD et al. (1990) The cytoplasmic region of the erythropoietin receptor contains non-overlapping positive and negative growth regulatory domains. Blood 76:89a

    Google Scholar 

  • Datta MC, Dukes PP (1975) Erythropoietin action in rat marrow cell cultures in complete absence of DNA synthesis: 1. Early effect on RNA synthesis. Biochem Biophys Res Comm 66:293–302

    PubMed  CAS  Google Scholar 

  • Davis JM et al. (1987) Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry 26:2633–2638

    PubMed  CAS  Google Scholar 

  • Dean A et al. (1981) Induction of hemoglobin accumulation in human K562 cells by hemin is reversible. Science 212:459–461

    PubMed  CAS  Google Scholar 

  • Delwiche F et al. (1985) Platelet-derived growth factor enhances in vitro erythropoiesis via stimulation of mesenchymal cells. J Clin Invest 76:137–142

    PubMed  CAS  Google Scholar 

  • Denton MJ, Arnstein HRV (1973) Characterization of developing adult mammalian erythroid cells separated by velocity sedimentation. Brit J Haematol 24:7–17

    CAS  Google Scholar 

  • Dessypris EN, Krantz SB (1984) Effect of pure erythropoietin on DNA-synthesis by human marrow day 15 erythroid burst forming units in short-term liquid culture. Brit J Haematol 56:295–306

    CAS  Google Scholar 

  • Dexter TM, Allen TP, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    PubMed  CAS  Google Scholar 

  • Dexter TM et al. (1981) Molecular and cell biologic aspects of erythropoiesis in long-term bone marrow cultures. Blood 58:699–707

    PubMed  CAS  Google Scholar 

  • Djaldetd M et al. (1972) Erythropoietin effects on fetal mouse erythroid cells. J Biol Chem 247:731–735

    Google Scholar 

  • Dmitrovsky E et al. (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322: 748–750

    PubMed  CAS  Google Scholar 

  • Docherty AJP et al. (1985) Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potendating activity. Nature 318:66–69

    PubMed  CAS  Google Scholar 

  • Donahue RE et al. (1985) Demonstration of burst-promoting activity of recombinant human GM-CSF on circulating erythroid progenitors using an assay involving the delayed addition of erythropoiedn. Blood 66:1479–1481

    PubMed  CAS  Google Scholar 

  • Donahue RE et al. (1986) Effects of N-linked carbohydrate on the in vivo properties of human GM-CSF. Cold Spring Harbor Symp Quant Biol 51:685–692

    PubMed  CAS  Google Scholar 

  • Donahue RE et al. (1990) Human P40 T-cell growth factor (Interieukin 9) supports erythroid colony formadon. Blood 75:2271–2275

    PubMed  CAS  Google Scholar 

  • Dordal MS et al. (1985) The role of carbohydrate in erythropoietin action. Endocrinology 116:2293–2299

    PubMed  CAS  Google Scholar 

  • Dube S et al. (1988) Glycosyladon at specific sites of erythropoietin is essendal for biosynthesis, secretion, and biological function. J Biol Chem 263:17516–17521

    PubMed  CAS  Google Scholar 

  • Dukovich M et al. (1987) A second human interleukin-2 binding protein that may be a component of high-affinity interieukin-2 receptors. Nature 327:518–521

    PubMed  CAS  Google Scholar 

  • Dunn CDR, Trent D (1981) The effect of parathyroid hormone on erythropoiesis in serum-free cultures of fetal mouse liver cells. Proc Soc Exp Biol Med 166: 556–561

    PubMed  CAS  Google Scholar 

  • Earp HS et al. (1983) DMSO increases tyrosine residue phosphorylation in membranes from murine erythroleukemia cells. Biochem Biophys Res Comm 112: 413–418

    PubMed  CAS  Google Scholar 

  • Eastment CE, Ruscetti FW (1985) Regulation of erythropoiesis in long-term hamster marrow cultures: a role of bone marrow-adherent cells. Blood 65:736–743

    PubMed  CAS  Google Scholar 

  • EHason JF et al. (1979) Erythropoietin-stimulated erythropoiesis in long-term bone marrow culture. Nature 281:382–384

    Google Scholar 

  • Emerson SG et al. (1985) Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity. J Clin Invest 76:1286–1290

    PubMed  CAS  Google Scholar 

  • Emerson SG et al. (1988) Human recombinant granulocyte-macrophage colony stimulating factor and interleukin 3 have overlapping but distinct hematopoietic activities. J Clin Invest 82:1282–1287

    PubMed  CAS  Google Scholar 

  • Emerson SG et al. (1989) Developmental regulation of erythropoiesis by hematopoietic growth factors: analysis on populations of BFU-E from bone marrow, peripheral blood, and fetal liver. Blood 74:49–55

    PubMed  CAS  Google Scholar 

  • Enver T et al. (1988) Erythropoietin changes the globin program of an interleukin 3-dependent multipotential cell line. Proc Natl Acad Sci 85:9091–9095

    PubMed  CAS  Google Scholar 

  • Eschbach JW et al. (1987) Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: results of a combined phase I and II clinical trial. N Engl J Med 316:73–78

    PubMed  CAS  Google Scholar 

  • Espada J et al. (1973) Effect of chemical and enzymatic agents on the biological activity of erythropoietin. Acta Physiol Latinoam 23:193–201

    CAS  Google Scholar 

  • Eto Y et al. (1987) Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Comm 142:1095–1103

    PubMed  CAS  Google Scholar 

  • Evans T et al. (1988) An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci 85:5976–5980

    PubMed  CAS  Google Scholar 

  • Evatt BL et al. (1976) Relationships between thrombopoiesis and erythropoiesis: with studies of the effects of preparations of thrombopoietin and erythropoietin. Blood 48:547–557

    PubMed  CAS  Google Scholar 

  • Fagg B (1981) Is erythropoietin the only factor which regulates late erythroid differentiation? Nature 289:184–186

    PubMed  CAS  Google Scholar 

  • Fagg B, Roitsch CA (1986) Characterization of erythropoietin-like activity from mouse spleen cells. J Cell Physiol 126:1–9

    PubMed  CAS  Google Scholar 

  • Faletto DL, Macara IG (1985) The role of Ca+’ in dimethyl sulfoxide-induced differentiation of Friend erythroleukemia cells. J Biol Chem 260:4884–4889

    PubMed  CAS  Google Scholar 

  • Faletto DL et al. (1985) An early decrease in phosphatidylinositol turnover occurs on induction of Friend cell differentiation and precedes the decrease in c-myc expression. Cell 43:315–325

    PubMed  CAS  Google Scholar 

  • Farrar WL et al. (1985) Altered cytosol/membrane enzyme redistribution on interleukin-3 activation of protein kinase C. Nature 315:235–237

    PubMed  CAS  Google Scholar 

  • Feldman L, Chung T (1989) Identification of a structural role for tyrosine-145 in human erythropoietin. Blood 74:194a

    Google Scholar 

  • Feldman L et al. (1987) Purification of a membrane-derived human erythroid growth factor. Proc Natl Acad Sci 84:6775–6779

    PubMed  CAS  Google Scholar 

  • Feldman L et al. (1989) B-lymphocyte-derived erythroid burst-promoting activity is distinct from other known lymphokines. Blood 73:1814–1820

    PubMed  CAS  Google Scholar 

  • Fernando L et al. (1975) Testosterone stimulation of a rapidly labeled, low-molecular-weight RNA fraction in human hepatic erythroid cells in culture. Proc Natl Acad Sci 72:523–527

    Google Scholar 

  • Fibach E et al. (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73:100–103

    PubMed  CAS  Google Scholar 

  • Fields AP et al. (1989) Interleukin-3 and bryostatin 1 mediate rapid nuclear envelope protein phosphorylation in growth factor-dependent FDC-Pl hematopoietic cells. J Biol Chem 264:21896–21901

    PubMed  CAS  Google Scholar 

  • Fraser JK et al. (1988a) Down-modulation of high-affinity receptors for erythropoietin on murine erythroblasts by interleukin 3. Exp Hematol 16:769–773

    PubMed  CAS  Google Scholar 

  • Fraser JK et al. (1988b) Expression and modulation of specific, high affinity binding sites for erythropoietin on the human erythroleukemic cell line K562. Blood 71:104–109

    PubMed  CAS  Google Scholar 

  • Fraser JK et al. (1988c) Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line, HEL. Exp Hematol 16:836–842

    PubMed  CAS  Google Scholar 

  • Fraser JK et al. (1989) Expression of specific high-affinity binding sites for erythropoiedn on rat and mouse megakaryocytes. Exp Hematol 17:10–16

    PubMed  CAS  Google Scholar 

  • Fredrickson TN et al. (1977) The interaction of erythropoietin with fetal liver cells: I. Measurement of proliferadon by tritiated thymidine incorporation. Exp Hematol 5:254–265

    PubMed  CAS  Google Scholar 

  • Friend C et al. (1971) Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethylsulfoxide. Proc Natl Acad Sci 68:378–382

    PubMed  CAS  Google Scholar 

  • Fukamachi H et al. (1987a) Binding of erythropoietin to CFU-E derived from fetal mouse liver cells. Exp Hematol 15:833–837

    PubMed  CAS  Google Scholar 

  • Fukamachi H et al. (1987b) Internalization of radioiodinated erythropoietin and the ligand-induced modulation of its receptor in murine erythroleukemia cells. Int J Cell Cloning 5:209–219

    PubMed  CAS  Google Scholar 

  • Fukuda MN et al. (1989) Survival of recombinant erythropoietin in the circulation:the role of carbohydrates. Blood 73:84–89

    PubMed  CAS  Google Scholar 

  • Fukunaga R et al. (1990a) Expression cloning of a receptor for murine granulocyte colony-stimuladng factor. Cell 62:341–350

    Google Scholar 

  • Fukunaga R et al. (1990b) Purification and characterization of the receptor for murine granulocyte colony-stimuladng factor. J Biol Chem 265:14008–14015

    PubMed  CAS  Google Scholar 

  • Gallicchio VS et al. (1982) Effects of ouabain and valinomycin on in vitro erythroid colony formadon (CFU-e and BFU-e). Exp Cell Biol 50:295–299

    PubMed  CAS  Google Scholar 

  • Ganser A et al. (1989) In vivo effects of recombinant human erythropoietin on circuladng human hemopoiedc progenitor cells. Exp Hematol 17:433–435

    PubMed  CAS  Google Scholar 

  • Geiduschek JB, Singer SJ (1979) Molecular changes in the membranes of mouse erythroid cells accompanying differendation. Cell 16:149–163

    PubMed  CAS  Google Scholar 

  • Gerard E et al. (1978) The proliferative potendal of plasma clot erythroid colony-forming cells in diffusion chambers. Blood Cells 4:105–128

    PubMed  CAS  Google Scholar 

  • Gidari AS (1981) Mechanism of glucocordcoid-mediated inhibition of murine erythroid colony formadon in vitro. J Cell Physiol 109:419–427

    PubMed  CAS  Google Scholar 

  • Gidari AS, Levere RD (1979) Glucocorticoid-mediated inhibition of erythroid colony formadon by mouse bone marrow cells. J Lab CUn Med 93:872–878

    CAS  Google Scholar 

  • Gilmore T, Martin GS (1983) Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine. Nature 306:487–490

    PubMed  CAS  Google Scholar 

  • Glass J et al. (1975) Use of cell separation and short-term culture techniques to study erythroid cell development. Blood 46:705–711

    PubMed  CAS  Google Scholar 

  • Goldberg MA et al. (1988) Reguladon of the erythropoiedn gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    PubMed  CAS  Google Scholar 

  • Goldberg MA et al. (1991) Erythropoiedn mRNA levels are governed by both the rate of gene transcription and posttranscripdonal events. Blood 77:271–277

    PubMed  CAS  Google Scholar 

  • Golde DW, Bersch N (1977) Growth hormone: species-specific stimulation of erythropoiesis in vitro. Science 196:1112–1113

    PubMed  CAS  Google Scholar 

  • Golde DW et al. (1976) Potentiation of erythropoiesis in vitro by dexamethasone. J CHn Invest 57:57–62

    CAS  Google Scholar 

  • Golde DW et al. (1977) Thyroid hormones sdmulate erythropoiesis in vitro. Brit J Haematol 37:173–177

    CAS  Google Scholar 

  • Goldwasser E (1981) Erythropoiedn and red cell differendadon. In: Cunningham D et al. (ed) Control of cellular division and development: Part A. Alan R Liss, New York, pp 487–494

    Google Scholar 

  • Goldwasser E et al. (1974) On the mechanism of erythropoietin-induced differentia-don: XII. The role of sialic acid in erythropoiedn action. J Biol Chem 249: 4202–4206

    PubMed  CAS  Google Scholar 

  • Goldwasser E et al. (1983) The effect of interleukin-3 on hemopoietic precursor cells. In: Normal and Neoplasdc Hematopoiesis, Alan R Liss, New York, pp 301–309

    Google Scholar 

  • Goodman JW et al. (1985) Interleukin 3 promotes erythroid burst formation in “serum-free” cultures without detectable erythropoietin. Proc Natl Acad Sci 82:3291–3295

    PubMed  CAS  Google Scholar 

  • Graber SE et al. (1972) The effect on cyclic AMP on heme synthesis by rat bone marrow cells in vitro. Proc Soc Exp Biol Med 141:206–210

    PubMed  CAS  Google Scholar 

  • Graber SE et al. (1974) Lack of effect of erythropoietin on cyclic adenosine 3’, 5’-monophosphate levels in rat fetal liver cells. J Lab Clin Med 83:288–295

    PubMed  CAS  Google Scholar 

  • Graber SÉ et al. (1977) Effect of erythropoietin preparations on cyclic AMP and cyclic GMP levels in rat fetal liver cell cultures. J Lab Clin Med 90:162–170

    PubMed  CAS  Google Scholar 

  • Graf T, Beug H (1983) Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell 34:7–9

    PubMed  CAS  Google Scholar 

  • Grasso J A et al. (1963) Cytochemical studies of nucleic acids and proteins in erythrocytic development. Proc Natl Acad Sci 50:134–140

    PubMed  CAS  Google Scholar 

  • Greenberg HM, Robinson SH (1978) Studies of erythroid progenitor cells in vivo and in vitro. Blood Cells 4:129–142

    PubMed  CAS  Google Scholar 

  • Gregory CJ (1976) Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J Cell Physiol 89:289–302

    PubMed  CAS  Google Scholar 

  • Gregory CJ, Eaves AC (1977) Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood 49:855–864

    PubMed  CAS  Google Scholar 

  • Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51:527–537

    PubMed  CAS  Google Scholar 

  • Gregory CJ et al. (1973) Erythroid progenitors capable of colony formation in culture. State of differentiation. J Cell Physiol 81:411–420

    PubMed  CAS  Google Scholar 

  • Gregory CJ et al. (1975) Transient erythropoietic spleen colonies: effects of erythropoietin in normal and genetically anemic W/W mice. J Cell Physiol 86:1–83

    PubMed  CAS  Google Scholar 

  • Gross M, Goldwasser E (1969) On the mechanism of erythropoietin-induced differentiation: V. Characterization of the ribonucleic acid formed as a result of erythropoietin action. Biochemistry 8:1795–1805

    PubMed  CAS  Google Scholar 

  • Gross M, Goldwasser E (1972) On the mechanism of erythropoietin-induced differentiation: XL Stimulated RNA synthesis independent of protein synthesis. Biochim Biophys Acta 287:514–519

    PubMed  CAS  Google Scholar 

  • Gross M, Goldwasser E (1976) On the mechanism of erythropoietin-induced differentiation: XIV. The apparent effect of etiocholanolone on initiation of erythropoiesis. Exp Hemat 4:227–233

    PubMed  CAS  Google Scholar 

  • Gurney CW et al. (1962) A method for investigation of stem-cell kinetics. Brit J Haematol 8:461–466

    CAS  Google Scholar 

  • Hadjian AJ et al. (1976) Stereospecific tissue uptake and nuclear accumulation of testosterone in the development of the mouse erythropoietic spleen. Blood 47:571–580

    PubMed  CAS  Google Scholar 

  • Hankins WD (1983) Increased erythropoietin sensitivity after in vitro transformation of hematopoietic precursors by RNA tumor viruses. J Natl Cane Instit 70: 725–734

    CAS  Google Scholar 

  • Hankins WD et al. (1978) Erythroid bursts produced by Friend leukaemia virus in vitro. Nature 276:506–508

    PubMed  CAS  Google Scholar 

  • Hankins WD, Krantz SB (1979) Effects of sulfhydryl compounds on Friend virus-infected spleen cells in vitro. J Biol Chem 254:5701–5707

    PubMed  CAS  Google Scholar 

  • Hankins WD, Scolnick EM (1981) Harvey and Kirsten sarcoma viruses promote the growth and differentiation of erythroid precursor cells in vitro. Cell 26:91–97

    PubMed  CAS  Google Scholar 

  • Hankins WD et al. (1987) Isolation of erythropoietin-dependent cell lines suggests a viability role for developmental hormones. Blood 70:173a

    Google Scholar 

  • Hanspal M, Kalraiya R (1989) Effect of erythropoietin on the a/spectrin synthetic ratio in Friend virus infected murine erythroblasts. Blood 74:217a

    Google Scholar 

  • Hanspal M, Palek J (1987) Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors. J Cell Biol 105:1417–1424

    PubMed  CAS  Google Scholar 

  • Hara H, Ogawa M (1976) Erythropoietic precursors in mice with phenyl hydrazine-induced anemia. Am J Hematol 1:453–458

    PubMed  CAS  Google Scholar 

  • Hara H, Ogawa M (1977) Erythropoietic precursors in mice under erythropoietic simulation and suppression. Exp Hematol 5:141–148

    PubMed  CAS  Google Scholar 

  • Hatakeyama M et al. (1989) Interleukin-2 receptor B chain gene: generation three receptor forms by cloned human a and B chain cDNA’s. Science 244:551–556

    PubMed  CAS  Google Scholar 

  • He Y et al. (1988) Inhibidon of interleukin 3 and colony-stimulating factor 1-sdmulated marrow cell proliferation by pertussis toxin. Blood 71:1187–1195

    PubMed  CAS  Google Scholar 

  • Heath DS et al. (1976) Separadon of the erythropoiedn-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood 47:777–792

    PubMed  CAS  Google Scholar 

  • Hilton CJ, Tan AS (1989) Evidence for direct involvement of G-proteins in erythropoiedn signal transduction. Blood 74:723a

    Google Scholar 

  • Hino M et al. (1989) Characterization of cellular receptors for erythroid differentia-don factor on murine erythroleukemia cells. J Biol Chem 264:10309–10314

    PubMed  CAS  Google Scholar 

  • Hinssen H et al. (1987) Gelsolin is expressed in early erythroid progenitor cells and negadvely regulated during erythropoiesis. J Cell Biol 105:1425–1433

    PubMed  CAS  Google Scholar 

  • Hitomi K et al. (1988) Erythropoiedn receptor of a human leukemic cell line with erythroid characteristics. Biochem Biophys Res Comm 154:902–909

    PubMed  CAS  Google Scholar 

  • Hitomi K et al. (1989) Solubilizadon and characterizadon of erythropoietin receptor from transplantable mouse erythroblastic leukemic cells. Biochem Biophys Res Commun 160:1140–1148

    PubMed  CAS  Google Scholar 

  • Hogans BB, Spivak JL (1988) Tumor promotor phorbol esters promote the proliferadon of interieukin 3 dependent cell lines. J Cell Physiol 137:346–352

    PubMed  CAS  Google Scholar 

  • Hollenberg MD (1986) Mechanisms of receptor-mediated transmembrane signaling. Experienda 42:718–727

    CAS  Google Scholar 

  • Horland AA et al. (1977) Proliferadon of erythroid colonies in semisoUd agar. Brit J Haematol 36:495–499

    CAS  Google Scholar 

  • Humphries RK et al. (1979) Characterization of a primidve erythropoiedc progenitor found in mouse marrow before and after several weeks in culture. Blood 53: 746–763

    PubMed  CAS  Google Scholar 

  • Ibrahim NG et al. (1982) The role of haem biosynthetic and degradative enzymes in erythroid colony development: the effect of haemin. Brit J Haematol 50:17–28

    CAS  Google Scholar 

  • Idzerda RL et al. (1990) Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J Exp Med 171:861–873

    PubMed  CAS  Google Scholar 

  • Im JH et al. (1990) Partial purification and characterizadon of erythropoiedn receptors from erythroid progenitor cells. Arch Biochem Biophys 278:486–491

    PubMed  CAS  Google Scholar 

  • Imagawa S et al. (1989) The effect of recombinant erythropoiedn on intracellular free calcium. Blood 73:1452–1457

    PubMed  CAS  Google Scholar 

  • Imamura K, Kufe D (1988) Colony-sdmuladng factor 1-induced Na+ inñux into human monocytes involves activation of a pertussis toxin-sensitive GTP-binding protein. J Biol Chem 263:14093–14098

    PubMed  CAS  Google Scholar 

  • Iscove NN (1977) The role of erythropoietin in reguladon of populadon size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet 10:323–334

    PubMed  CAS  Google Scholar 

  • Iscove NN (1978a) Erythropoietin-independent stimuladon of early erythropoiesis in adult marrow cultures by conditioned medium from lecdn-sdmu lated mouse spleen cells. ICN-UCLA symposium on hematopoietic cell differentiation. Academic 10:37–52

    Google Scholar 

  • Iscove NN (1978b) Regulation of proliferation and maturation at early and late stages of erythroid differentiation. In: Saunders GF (ed) Cell differentiation and neoplasia. Raven, New York, pp 195–209

    Google Scholar 

  • Iscove NN, Sieber F (1975) Erythroid progenitors in mouse bone marrow detected by macroscopic colony formadon in culture. Exp Hemat 3:32–43

    PubMed  CAS  Google Scholar 

  • Iscove NN et al. (1974) Erythroid colony formadon in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavahn A. J Cell Physiol 83:309–320

    PubMed  CAS  Google Scholar 

  • Iscove NN et al. (1980) Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acid, lecithin and cholesterol. Exp Cell Res 126:121–126

    PubMed  CAS  Google Scholar 

  • Iscove NN et al. (1982) Molecules stimulating early red cell, granulocyte, macrophage and megakaryocyte precursors in culture: similarity in size, hydrophobicity and charge. J Cell Physiol (Suppl 1) 1:65–78

    CAS  Google Scholar 

  • Itoh N et al. (1990) Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 249:324–327

    Google Scholar 

  • Ives HE, Daniel TO (1987) Interrelationship between growth factor-induced pH changes and intracellular Ca+. Proc Natl Acad Sci 84:1950–1954

    PubMed  CAS  Google Scholar 

  • Jacobs K et al. (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806–809

    PubMed  CAS  Google Scholar 

  • Jenis DM et al. (1989) Effects of inhibitors and activators or protein kinase C on late erythroid progenitor (CFU-e) colony formation in vitro. Int J Cell Cloning 7:190–202

    PubMed  CAS  Google Scholar 

  • Jones SS et al. (1990) Human erythropoietin receptor: cloning, expression, and biologic characterization. Blood 76:31–35

    PubMed  CAS  Google Scholar 

  • Kanakura Y et al. (1990) Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76:706–715

    PubMed  CAS  Google Scholar 

  • Kawasaki ES et al. (1985) Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230: 291–296

    PubMed  CAS  Google Scholar 

  • Keighley G, Lowy PH (1966) Actinomycin and erythropoiesis and the production of erythropoietin in mice. Blood 27:637–645

    PubMed  CAS  Google Scholar 

  • Kelvin DJ et al. (1986) Interleukin 3 and cell cycle progression. J Cell Physiol 127:403–409

    PubMed  CAS  Google Scholar 

  • Kennedy WL et al. (1980) Regulation of red blood cell production by erythropoietin: normal mouse marrow in vitro. Exp Hematol 8:1114–1122

    PubMed  CAS  Google Scholar 

  • Kimura H et al. (1986) Hematopoiesis in the rat: quantitation of hematopoietic progenitors and the response to iron deficiency anemia. J Cell Physiol 126: 298–306

    PubMed  CAS  Google Scholar 

  • King DJ et al. (1987) Modulation of human erythropoiesis by hydrocortisone in vitro. Eur J Haematol 38:137–140

    PubMed  CAS  Google Scholar 

  • Kirsch IR et al. (1986) Regulated expression of the c-myb and c-myc oncogenes during erythroid differentiation. J Cell Biochem 32:22–21

    Google Scholar 

  • Kitamura T et al. (1989) Identification and analysis of human erythropoietin receptors on a factor-dependent cell Hne, TF-1. Blood 73:375–380

    PubMed  CAS  Google Scholar 

  • Klinken SP et al. (1988) In vitro-derived leukemic erythroid cell lines induced by a raf-and myc-containing retrovirus differentiate in response to erythropoietin. Proc Natl Acad Sci 85:8506–8510

    PubMed  CAS  Google Scholar 

  • Koenig JM, Christensen RD (1990) Effect of erythropoietin on granulocytopoiesis: in vitro and in vivo studies in weanling rats. Pediat Res 27:583–587

    PubMed  CAS  Google Scholar 

  • Kost TA et al. (1979) Target cells for Friend virus-induced erythroid bursts in vitro. Cell 18:145–152

    PubMed  CAS  Google Scholar 

  • Koury MJ, Bondurant MC (1988) Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J Cell Physiol 137:65–74

    PubMed  CAS  Google Scholar 

  • Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381

    PubMed  CAS  Google Scholar 

  • Koury MJ et al. (1982) Specific differentiation events induced by erythropoietin in cells infected in vitro with the anemia strain of Friend virus. Proc Natl Acad Sci 79:635–639

    PubMed  CAS  Google Scholar 

  • Koury MJ et al. (1986) The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation. J Cell Physiol 126:259–265

    PubMed  CAS  Google Scholar 

  • Koury MJ et al. (1987a) Changes in erythroid membrane proteins during erythropoietin-mediated terminal differentiation. J Cell Physiol 133:438–448

    PubMed  CAS  Google Scholar 

  • Koury MJ et al. (1987b) Erythropoietin control of terminal erythroid differentiation: maintenance of cell viability, production of hemoglobin, and development of the erythrocyte membrane. Blood Cells 13:217–226

    PubMed  CAS  Google Scholar 

  • Koury MJ et al. (1988) Erythropoietin messenger RNA levels in developing mice and transfer of I-erythropoietin by the placenta. J Clin Invest 82:154–159

    PubMed  CAS  Google Scholar 

  • Kovacina KS et al. (1990) Insulin activates the kinase activity of the raf-1 protooncogene by increasing its serine phosphorylation. J Biol Chem 265: 12115–12118

    PubMed  CAS  Google Scholar 

  • Krantz SB, Fried W (1968) In vitro behavior of stem cells. J Lab Clin Med 72: 157–164

    PubMed  CAS  Google Scholar 

  • Krantz SB, Goldwasser E (1984) Specific binding of erythropoietin to spleen cells infected with the anemia strain of Friend virus. Proc Natl Acad Sci 81: 7574–7578

    PubMed  CAS  Google Scholar 

  • Krantz SB, Jacobson LO (1970) Erythropoiedn and the regulation of erythropoiesis. University Press, Chicago

    Google Scholar 

  • Krystal G (1983) A simple microassay for erythropoietin based on H-thymidine incorporadon into spleen cells from phenylhydrazine treated mice. Exp Hematol 11:649–660

    PubMed  CAS  Google Scholar 

  • Kurtz A et al. (1982) A new candidate for the reguladon of erythropoiesis. Insulin-Uke growth factor I. FEBS Lett 149:105–108

    PubMed  CAS  Google Scholar 

  • Kurtz A et al. (1983) Insulin stimulates erythroid colony formation independently of erythropoietin. Brit J Haematol 53:311–316

    CAS  Google Scholar 

  • Kyprianou N, Isaacs JT (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122:552–562

    PubMed  CAS  Google Scholar 

  • Lachman HM, Skoultchi AI (1984) Expression of c-myc changes during differentia-don of mouse erythroleukaemia cells. Nature 310:592–594

    PubMed  CAS  Google Scholar 

  • Lachman HM et al. (1985) C-myc mRNA levels in the cell cycle change in mouse erythroleukemia cells following inducer treatment. Proc Natl Acad Sci 82: 5323–5327

    PubMed  CAS  Google Scholar 

  • Lachman HM et al. (1986) Transfection of mouse erythroleukemia cells with myc sequences changes the rate of induced commitment to differentiate. Proc Natl Acad Sci 83:6480–6484

    PubMed  CAS  Google Scholar 

  • Landschulz K et al. (1989) Erythropoiedn receptors on murine erythroid colony-forming units: natural history. Blood 73:1476–1486

    PubMed  CAS  Google Scholar 

  • Lannigan DA, Knauf PA (1985) Decreased intracellular Na+ concentration is an early event in murine erythroleukemic cell differentiadon. J Biol Chem 260: 7322–7324

    PubMed  CAS  Google Scholar 

  • Lanotte M et al. (1986) Selective inhibidon of the proliferation of various murine hemopoietic progenitor cells by cholera toxin. Exp Hematol 14:724–731

    PubMed  CAS  Google Scholar 

  • Law ML et al. (1986) Chromosomal assignment of the human erythropoietin gene and its DNA polymorphism. Proc Natl Acad Sci 83:6920–6924

    PubMed  CAS  Google Scholar 

  • Lawrence WD et al. (1987) Action of erythropoietin in vitro on rabbit reticulocyte membrane Ca+ ATPase activity. J Clin Invest 80:586–589

    PubMed  CAS  Google Scholar 

  • Lazarides E (1987) From genes to structural morphogenesis: the genesis and epigenesis of a red blood cell. Cell 51:345–356

    PubMed  CAS  Google Scholar 

  • Leung P, Gidari AS (1981) Glucocorticoids inhibit erythroid colony formadon by murine fetal liver erythroid progenitor cells in vitro. Endocrinology 108: 1787–1794

    PubMed  CAS  Google Scholar 

  • Levenson R et al. (1983) Ionic reguladon of MEL cell commitment. J Cell Biochem 21:1–8

    PubMed  CAS  Google Scholar 

  • Li JP et al. (1990) Acdvation of cell growth by binding of Friend spleen focus-forming virus gp glycoprotein to the erythropoiedn receptor. Nature 343: 762–764

    PubMed  CAS  Google Scholar 

  • Lin FK (1987) The molecular biology of erythropoietin. In: Rich IN (ed) Molecular and cellular aspects of erythropoietin and erythropoiesis, series H. Springer, Beriin Heidelberg, New York pp 23–36 (Cell biology, vol VIII)

    Google Scholar 

  • Lin FK et al. (1985) Cloning and expression of the human erythropoietin gene. Proc Nad Acad Sci 82:7580–7584

    CAS  Google Scholar 

  • Linch DC et al. (1987) The effects of erythropoietin on primidve human erythroid cells. Blood 70:177a

    Google Scholar 

  • Lipton JM et al. (1981) Response of three classes of human erythroid progenitors to the absence of erythropoietin in vitro as a measure of progenitor maturity. Exp Hematol 9:1035–1041

    PubMed  CAS  Google Scholar 

  • London L, McKearn JP (1987) Activation and growth of colony-stimulating factor-dependent cell lines is cell cycle stage dependent. J Exp Med 166:1419–1435

    PubMed  CAS  Google Scholar 

  • Long MW et al. (1985) Phorbol diesters stimulate the development of an early murine progenitor cell. J Clin Invest 76:431–438

    PubMed  CAS  Google Scholar 

  • Longmore G et al. (1990) A point mutation in the exoplasmic domain of the erythropoietin receptor results in hormone-independent activation and tumori-genicity. Blood 76:238a

    Google Scholar 

  • Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    PubMed  CAS  Google Scholar 

  • MacDonald ME et al. (1980) Anemia-and polycythemia-inducing isolates of Friend spleen focus-forming virus. Biological and molecular evidence for two distinct viral genomes. J Exp Med 151:1477–1492

    PubMed  CAS  Google Scholar 

  • Macklis RM et al. (1982) Synthesis of hemoglobin F in adult simian erythroid progenitor-derived colonies. J Clin Invest 70:752–761

    PubMed  CAS  Google Scholar 

  • Mak TW et al. (1979) Fv-2 locus controls expression of Friend spleen focus-forming virus-specific sequences in normal and infected mice. Proc Natl Acad Sci 76: 5809–5812

    PubMed  CAS  Google Scholar 

  • Maniatis GM et al. (1973) Early stimulation of RNA synthesis by erythropoietin in cultures of erythroid precursor cells. Proc Natl Acad Sci 70:3189–3194

    PubMed  CAS  Google Scholar 

  • Martin DIK et al. (1989) Increased y-globin expression in a nondeletion HPFH mediated by an erythroid-specific DNA-binding factor. Nature 338:435–438

    PubMed  CAS  Google Scholar 

  • Martin DIK et al. (1990) Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344:444–447

    PubMed  CAS  Google Scholar 

  • Martin P, Papayannopoulou T (1982) HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 216:1233–1235

    PubMed  CAS  Google Scholar 

  • Mason-Garcia M et al. (1990) Rapid activation by erythropoietin of protein kinase C in the nuclei of erythroid progenitor cells. Biochem Biophys Res Comm 168: 490–497

    PubMed  CAS  Google Scholar 

  • Mayani H et al. (1990) Modulation of erythropoiesis and myelopoiesis by exogenous erythropoietin in human long-term marrow cultures. Exp Hematol 18:174–179

    PubMed  CAS  Google Scholar 

  • Mayeux P et al. (1983) Evidence for glucocorticosteroid receptors in the erythroid cell line of fetal rat liver. J Endocrinol 96:311–319

    PubMed  CAS  Google Scholar 

  • Mayeux P et al. (1986a) Induction by hemin of proliferation and of differentiation of progenitor erythroid cells responsible for erythropoietin. Exp Hematol 14: 801–808

    PubMed  CAS  Google Scholar 

  • Mayeux P et al. (1986b) Mode of action of erythropoietin and glucocorticoids on the hepatic erythroid precursor cells: role of prostaglandins. Cell Diff 18:17–26

    CAS  Google Scholar 

  • Mayeux P et al. (1987a) Murine erythroleukaemia cells (Friend cells) possess high-affinity binding sites for erythropoietin. FEBS Lett 211:229–233

    PubMed  CAS  Google Scholar 

  • Mayeux P et al. (1987b) The erythropoietin receptor of rat erythroid progenitor cells. Characterization and affinity cross-linkage. J Biol Chem 262:13985–13990

    PubMed  CAS  Google Scholar 

  • Mayeux P et al. (1990) Glycosylation of the murine erythropoietin receptor. FEBS Lett 269:167–170

    PubMed  CAS  Google Scholar 

  • McCaffery PJ et al. (1989) Subunit structure of the erythropoietin receptor. J Biol Chem 264:10507–10512

    PubMed  CAS  Google Scholar 

  • McCool D et al. (1970) Erythropoietin sensitivity of rat bone marrow cells separated by velocity sedimentation. Cell Tissue Kinet 3:55–65

    PubMed  CAS  Google Scholar 

  • McDonald JD et al. (1986) Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Molec Cell Biol 6:842–848

    PubMed  CAS  Google Scholar 

  • McDonald TP et al. (1987) High doses of recombinant erythropoietin stimulate platelet production in mice. Exp Hematol 15:719–721

    PubMed  CAS  Google Scholar 

  • McLeod DL et al. (1980) Chromosome marker evidence for the bipotentiality of BFU-e. Blood 56:318–322

    PubMed  CAS  Google Scholar 

  • Means RT et al. (1987) Treatment of the anemia of rheumatoid arthrids with recombinant human erythropoietin: clinical and in vitro results. Blood 70:139a

    Google Scholar 

  • Merchav S et al. (1988) Enhancement of erythropoiesis in vitro by human growth hormone is mediated by insulin-like growth factor 1. Brit J Haematol 70: 267–271

    CAS  Google Scholar 

  • Metcalf D (1985) The granulocyte-macrophage colony stimuladng factors. Cell 43:5–6

    PubMed  CAS  Google Scholar 

  • Metcalf D, Johnson GR (1979) Interacdons between purified GM-CSF, purified GM-CSF, purified erythropoiedn and spleen conditioned medium on hemopoietic colony formadon in vitro. J Cell Physiol 99:159–174

    PubMed  CAS  Google Scholar 

  • Metcalf D et al. (1980) Direct sdmuladon by purified GM-CSF of the proliferation of multipotential and erythroid precursor cells. Blood 55:138–147

    PubMed  CAS  Google Scholar 

  • Migliaccio AR et al. (1987) Evidence for direct action of human biosynthetic (recombinant) GM-CSF on erythroid progenitors in serum-free culture. Blood 70:1867–1871

    PubMed  CAS  Google Scholar 

  • Migliaccio AR et al. (1988) Effect of recombinant hematopoietic growth factors on proliferation of human marrow progenitor cells in serum-deprived liquid culture. Blood 72:1387–1392

    PubMed  CAS  Google Scholar 

  • Migliaccio AR et al. (1990) Progressive and coordinate inactivation of NF-El and erythropoietin receptor (EpoR) gene expression during myelomonocytic differentiation in growth factor-dependent cell lines. Blood 76:106a

    Google Scholar 

  • Migliaccio G et al. (1986) Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac-liver transition. J Clin Invest 78:51–60

    PubMed  CAS  Google Scholar 

  • Migliaccio G et al. (1988) Synergism between erythropoietin and interleukin-3 in the induction of hematopoietic stem cell proliferation and erythroid burst colony formation. Blood 72:944–951

    PubMed  CAS  Google Scholar 

  • Miller BA, Foster K (1989) Pertussis-toxin sensitive GTP-binding proteins are involved in the signal transduction mechanism of erythropoietin. Blood 74:190a

    Google Scholar 

  • Miller BA et al. (1988) Erythropoietin stimulates a rise in intracellular free calcium concentration in single early human erythroid precursors. J Clin Invest 82: 309–315

    PubMed  CAS  Google Scholar 

  • Miller BA et al. (1989) Erythropoietin stimulates a rise in intracellular-free concentration in single BFU-E derived erythroblasts at specific stages of differentiation. Blood 73:1188–1194

    PubMed  CAS  Google Scholar 

  • Mills GB et al. (1990) Interleukin 2-induced tyrosine phosphorylation. J Biol Chem 265:3561–3567

    PubMed  CAS  Google Scholar 

  • Mishina Y et al. (1984) Modulation of nonglobin mRNA levels in erythropoiesis. Develop Biol 106:343–350

    PubMed  CAS  Google Scholar 

  • Mishina Y et al. (1988) Stage-specific gene expression in erythroid progenitor cells (CFU-E). Cell Diff 22:259–266

    CAS  Google Scholar 

  • Misiti J, Spivak JL (1979a) Erythropoiesis in vitro. Role of calcium. J Clin Invest 64:1573–1579

    PubMed  CAS  Google Scholar 

  • Misiti J, Spivak JL (1979b) Separation of erythroid progenitor cells in mouse bone marrow by isokinetic-gradient sedimentation. Blood 54:105–116

    PubMed  CAS  Google Scholar 

  • Miyake T et al. (1977) Purification of human erythropoietin. J Biol Chem 252: 5558–5564

    PubMed  CAS  Google Scholar 

  • Miyatake S et al. (1985) Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J 4:2561–2568

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, Levere RD (1971) Enhancement of heme and globin synthesis in cultured human marrow by certain 5B-H steroid metabolites. J Exp Med 134:1501–1512

    PubMed  CAS  Google Scholar 

  • Mladenovic J, Kay NE (1988) Erythropoietin induces rapid increases in intracellular free calcium in human bone marrow cells. J Lab CHn Med 112:23–27

    CAS  Google Scholar 

  • Moccia G et al. (1980) The effect of plethora on erythropoietin levels. Proc Soc Exp Biol Med 163:36–38

    PubMed  CAS  Google Scholar 

  • Modder B et al. (1978) The in vitro and in vivo effects of testosterone and steroid metabolites on erythroid colony forming cells (CFU-E). J Pharmacol Exp Therap 207:1004–1012

    CAS  Google Scholar 

  • Monette FC, Holden SA (1982) Hemin enhances the in vitro growth of primitive erythroid progenitor cells. Blood 60:527–530

    PubMed  CAS  Google Scholar 

  • Monette FC et al. (1980) Cell-cycle properties and proliferation kinetics of late erythroid progenitors in murine bone marrow. Exp Hematol 8:484–493

    PubMed  CAS  Google Scholar 

  • Monette FC et al. (1981) Characterization of murine erythroid progenitors with high erythropoietin sensitivity in vitro. Exp Hematol 9:249–256

    PubMed  CAS  Google Scholar 

  • Moria AO et al. (1988) Hematopoietic growth factors activate the tyrosine phosphorylation of distinct sets of proteins in interleukin-3-dependent murine cell lines. Mol Cell Biol 8:2214–2218

    Google Scholar 

  • Morrison DK et al. (1988) Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci 85:8855–8859

    PubMed  CAS  Google Scholar 

  • Morse BS et al. (1970) Relationship of erythropoietin effectiveness to the generative cycle of erythroid precursor cell. Blood 35:761–774

    PubMed  CAS  Google Scholar 

  • Mufson RA, Gesner TG (1987) Binding and internalization of recombinant human erythropoietin in murine erythroid precursor cells. Blood 69:1485–1490

    PubMed  CAS  Google Scholar 

  • Muller R et al. (1983) Transcription of c-onc genes c-ras’ and c-fms during mouse development. Mol Cell Biol 3:1062–1069

    PubMed  CAS  Google Scholar 

  • Murata M et al. (1988) Erythroid differentiation factor is encoded by the same mRNA as that of the inhibin BA chain. Proc Natl Acad Sci 85:2434–2438

    PubMed  CAS  Google Scholar 

  • Nagata S et al. (1986a) The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J 5:575–581

    PubMed  CAS  Google Scholar 

  • Nagata S et al. (1986b) Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319:415–418

    PubMed  CAS  Google Scholar 

  • Nakahata T et al. (1982a) A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 113:455–458

    PubMed  CAS  Google Scholar 

  • Nakahata T et al. (1982b) Clonal origin of human erythro-eosinophihc colonies in culture. Blood 59:857–864

    PubMed  CAS  Google Scholar 

  • Nakazawa M et al. (1989) KU 812: a pluripotent human cell line with spontaneous erythroid terminal maturation. Blood 73:2003–2013

    PubMed  CAS  Google Scholar 

  • Necheles TF, Rai US (1969) Studies on the control of hemoglobin synthesis: the in vitro stimulating effect of a 5B-H steroid metaboHte on heme formation in human bone marrow cells. Blood 34:380–384

    PubMed  CAS  Google Scholar 

  • Nicol AG et al. (1972) Characteristics of erythropoietin-induced RNA from foetal mouse liver erythropoietic cell cultures and the effects of 5-fluorodeoxyuridine. Biochim Biophys Acta 277:342–353

    PubMed  CAS  Google Scholar 

  • Nicola NA et al. (1979) Similar molecular properties of granulocyte-macrophage colony-stimulating factors produced by different mouse organs in vitro and in vivo. J Biol Chem 254:5290–5299

    PubMed  CAS  Google Scholar 

  • Nijhof W, Wierenga PK (1983) Isolation and characterization of the erythroid progenitor cell: CFU-E. J Cell Biol 96:386–392

    PubMed  CAS  Google Scholar 

  • Nijhof W, Wierenga PK (1988) Biogenesis of the red cell membrane and cytoskeletal proteins during erythropoiesis in vitro. Exp Cell Res 177:329–337

    PubMed  CAS  Google Scholar 

  • Nijhof W et al. (1984) Cell kinetic behaviour of a synchronized population of erythroid precursor cells in vitro. Cell Tissue Kinet 17:629–639

    PubMed  CAS  Google Scholar 

  • Nijhof W et al. (1987) Induction of globin mRNA transcription by erythropoietin in differentiating erythroid precursor cells. Exp Hematol 15:779–784

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    PubMed  CAS  Google Scholar 

  • Niskanen E et al. (1988a) In vivo effect of human erythroid-potentiating activity on hematopoiesis in mice. Blood 72:806–810

    PubMed  CAS  Google Scholar 

  • Niskanen E et al. (1988b) Physiological concentrations of atrial natriuretic factor stimulate human erythroid progenitors in vitro. Biochem Biophys Res Commun 156:15–21

    PubMed  CAS  Google Scholar 

  • Obinata M, Ikawa Y (1980) Change in message sequences during erythro-differentiation. Nucl Acids Res 8:4271–4282

    PubMed  CAS  Google Scholar 

  • Oddos T et al. (1987) Erythropoiesis in murine long-term bone-marrow cell cultures: dependence on erythropoietin and endogenous production of an erythropoietic stimulating activity. J Cell Physiol 133:72–78

    PubMed  CAS  Google Scholar 

  • Ogawa M et al. (1977) Human marrow erythropoiesis in culture: II. Heterogeneity in the morphology, time course of colony formation, and sedimentation velocities of the colony-forming cells. Am J Hematol 3:29–36

    PubMed  CAS  Google Scholar 

  • Orlic D et al. (1968) Ultrastructural and autoradiographic studies of erythropoietin-induced red cell production. Ann NY Acad Sci 149:198–216

    PubMed  CAS  Google Scholar 

  • Osty J et al. (1988) Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Endocrinology 123:2303–2311

    PubMed  CAS  Google Scholar 

  • O’Sullivan MB et al. (1970) Some molecular characteristics of human urinary erythropoietin determined by gel filtration and density-gradient ultracentrifuga-tion. J Lab Clin Med 75:771–779

    PubMed  Google Scholar 

  • Ouellette PL, Monette FC (1980) Erythroid progenitors forming clusters in vitro demonstrate high erythropoietin sensitivity. J Cell Physiol 105:181–184

    PubMed  CAS  Google Scholar 

  • Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–977

    PubMed  CAS  Google Scholar 

  • Papayannopoulou T et al. (1972) On the in vivo action of erythropoietin: a quantitative analysis. J Clin Invest 51:1179–1185

    PubMed  CAS  Google Scholar 

  • Parmley RT et al. (1978) Human marrow erythropoiesis in culture: III. Ultrastructural and cytochemical studies of cellular interactions. Exp Hemat 6:78–90

    PubMed  CAS  Google Scholar 

  • Patel VP, Lodish HF (1986) The fibronectin receptor on mammahan erythroid precursor cells: characterization and developmental regulation. J Cell Biol 102:449–456

    PubMed  CAS  Google Scholar 

  • Paul J et al. (1969) Erythropoietic cell population changes during the hepatic phase of erythropoiesis in the foetal mouse. Cell Tissue Kinet 2:283–294

    Google Scholar 

  • Paul J et al. (1973) Effects of erythropoietin on cell populations and macromolecular syntheses in foetal mouse erythroid cells. J Embryol Exp Morph 29:453–472

    PubMed  CAS  Google Scholar 

  • Pekonen F et al. (1987) Erythropoietin binding sites in human foetal tissues. Acta Endocrinol 116:561–567

    PubMed  CAS  Google Scholar 

  • Perretta M et al. (1980) Hormonal control of RNA polymerases in rat bone marrow nuclei. The action of erythropoietin and testosterone. Arch Biol Med Exp 13:247–257

    PubMed  CAS  Google Scholar 

  • Perrine SP et al. (1986) Insulin stimulates cord blood erythroid progenitor growth: evidence for an aetiological role in neonatal polycythaemia. Brit J Haematol 64:503–511

    CAS  Google Scholar 

  • Peschle C et al. (1977a) Enhanced erythroid burst formation in mice after testosterone treatment. Life Sci 21:773–778

    PubMed  CAS  Google Scholar 

  • Peschle C et al. (1977b) Erythroid colony formation and erythropoietin activity in mice treated with estradiol benzoate. Life Sci 21:1303–1310

    PubMed  CAS  Google Scholar 

  • Peschle C et al. (1977c) Kinetics of erythroid and myeloid stem cells in post-hypoxia polycythaemia. Brit J Haematol 37:345–352

    CAS  Google Scholar 

  • Peschle C et al. (1979) Early fluctuations of BFU-E pool size after transfusion or erythropoietin treatment. Exp Hemat 7:87–93

    PubMed  CAS  Google Scholar 

  • Peschle C et al. (1980) Fluctuations of BFUe and CFUe cycling after erythroid perturbations: correlation with variations of pool size. Exp Hemat 8:96–102

    PubMed  CAS  Google Scholar 

  • Piantadosi CA et al. (1976) Sequential activation of splenic nuclear RNA polymerases by erythropoietin. J CUn Invest 57:20–26

    CAS  Google Scholar 

  • Pierce JH et al. (1985) Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41:685–693

    PubMed  CAS  Google Scholar 

  • Popovic WJ et al. (1977) The influence of thyroid hormones on in vitro erythropoiesis. J Clin Invest 60:907–913

    PubMed  CAS  Google Scholar 

  • Popovic WJ et al. (1979) Modulation of in vitro erythropoiesis. Studies with euthyroid and hypothyroid dogs. J Clin Invest 64:56–61

    PubMed  CAS  Google Scholar 

  • Porter PN et al. (1979) Enhancement of erythroid colony growth in culture by hemin. Exp Hemat 7:11–16

    PubMed  CAS  Google Scholar 

  • Powell JS et al. (1986) Human erythropoiedn gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc Natl Acad Sci 83:6465–6469

    PubMed  CAS  Google Scholar 

  • Prchal JF et al. (1976) Human erythroid colony formation in vitro: evidence for clonal origin. J Cell Physiol 89:489–492

    PubMed  CAS  Google Scholar 

  • Preisler HD, Giladi M (1974) Erythropoietin responsiveness of differendadng Friend leukaemia cells. Nature 251:645–646

    PubMed  CAS  Google Scholar 

  • Prochownik EV, Kukowska J (1986) Deregulated expression of c-myc by murine erythroleukaemia cells prevents differendation. Nature 322:848–850

    PubMed  CAS  Google Scholar 

  • Przala F et al. (1979) Influence of albuterol on erythropoietin production and erythroid progenitor cell activation. Am J Physiol 236:H422-H426 Ramsay RG et al. (1986) Changes in gene expression associated with induced differentiation of erythroleukemia: protooncogenes, globin genes, and cell division. Proc Natl Acad Sci 83:6849–6853

    Google Scholar 

  • Rearden A, Masouredis SP (1977) Blood group D antigen content of nucleated red cell precursors. Blood 50:981–986

    PubMed  CAS  Google Scholar 

  • Recny MA et al. (1987) Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. J Biol Chem 262:17156–17163

    PubMed  CAS  Google Scholar 

  • Regoeczi E et al. (1980) Galactose-specific elimination of human asialotransferrin by the bone marrow in the rabbit. Arch Biochem Biophys 205:76–84

    PubMed  CAS  Google Scholar 

  • Reissmann KR (1956) Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood 5:372–380

    Google Scholar 

  • Reissmann KR, Ito K (1966) Selective eradication of erythropoiesis by actinomycin D as the result of interference with hormonally controlled effector pathway of cell differentiation. Blood 28:201–212

    PubMed  CAS  Google Scholar 

  • Reissmann KR, Samorapoompichit S (1969) Effect of erythropoietin on regeneration of hematopoietic stem cells after 5-fluorouracil administration. J Lab Clin Med 73:544–550

    PubMed  CAS  Google Scholar 

  • Reissmann KR, Samorapoompichit S (1970) Effect of erythropoietin on proliferation of erythroid stem cells in the absence of transplantable colony-forming units. Blood 36:287–296

    PubMed  CAS  Google Scholar 

  • Reissmann KR, Udupa KB (1972) Effect of erythropoietin on proliferation of erythropoietin-responsive cells. Cell Tissue Kinet 5:481–489

    PubMed  CAS  Google Scholar 

  • Reissmann KR et al. (1974) Effects of erythropoietin and androgens on erythroid stem cells after their selective suppression by BCNU. Blood 44:649–657

    PubMed  CAS  Google Scholar 

  • Rettenmier CW et al. (1986) Expression of the human c-fms proto-oncogene product (colony-stimulating factor-1 receptor) on peripheral blood mononuclear cells and choriocarcinoma cell lines. J Clin Invest 77:1740–1746

    PubMed  CAS  Google Scholar 

  • Rifkind RA et al. (1969) An ultrastructural study of early morphogenetic events during the establishment of fetal hepatic erythropoiesis. J Cell Biol 40:343–365

    PubMed  CAS  Google Scholar 

  • Robinson J et al. (1981) Expression of cell-surface HLA-DR, HLA-ABC and glycophorin during erythroid differentiation. Nature 289:68–71

    PubMed  CAS  Google Scholar 

  • Rodgers GM et al. (1976) Elevated cyclic GMP concentrations in rabbit bone marrow culture and mouse spleen following erythropoietic stimulation. Biochem Biophys Res Comm 70:287–294

    PubMed  CAS  Google Scholar 

  • Romeo PH et al. (1990) Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344:447–449

    PubMed  CAS  Google Scholar 

  • Roodman GD et al. (1975) DNA polymerase activities during erythropoiesis. Exp Cell Res 91:269–278

    PubMed  CAS  Google Scholar 

  • Roodman GD et al. (1981a) Effects of shortened erythropoietin exposure on sheep marrow cultures. Brit J Haematol 47:195–201

    CAS  Google Scholar 

  • Roodman GD et al. (1981b) Stimulation of erythroid colony formation in vitro by erythropoietin immobilized on agarose-bound lectins. J Lab Clin Med 98: 684–690

    PubMed  CAS  Google Scholar 

  • Rosenlof K et al. (1987) Receptors for recombinant erythropoietin in human bone marrow cells. Scand J Clin Lab Invest 47:823–827

    PubMed  CAS  Google Scholar 

  • Rossi GB et al. (1980) In vitro interactions of PGE and cAMP with murine and human erythroid precursors. Blood 56:74–79

    PubMed  CAS  Google Scholar 

  • Rowley PT et al. (1978) Erythroid colony formation from human fetal liver. Proc Natl Acad Sci 75:984–988

    PubMed  CAS  Google Scholar 

  • Rowley PT et al. (1981) Erythropoiesis in vitro: enhancement by neuraminidase. Blood 57:483–490

    PubMed  CAS  Google Scholar 

  • Rozengurt E (1986) Early signals in the mitogenic response. Science 234:161–166

    PubMed  CAS  Google Scholar 

  • Ruscetti SK et al. (1990) Friend spleen focus-forming virus induces factor independence in an erythropoietin-dependent erythroleukemia cell line. J Virol 63:1057–1062

    Google Scholar 

  • Sakaguchi M et al. (1987a) Human erythropoietin stimulates murine megakar-yopoiesis in serum-free culture. Exp Hematol 15:1028–1034

    PubMed  CAS  Google Scholar 

  • Sakaguchi M et al. (1987b) The expression of functional erythropoietin receptors on an interleukin-3 dependent cell line. Biochem Biophys Res Comm 146:7–12

    PubMed  CAS  Google Scholar 

  • Sandberg G, Bjorkholm D(1974) Differing effects of estradiol on erythroid cells in the bone marrow and spleen of guinea pigs. Exp Hematol 2:317–327

    PubMed  CAS  Google Scholar 

  • Sasaki H et al. (1987) Carbohydrate structure of erythropoietin expression in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262:12059–12076

    PubMed  CAS  Google Scholar 

  • Sasaki H et al. (1988) Site-specific glycosylation of human recombinant erythropoietin: analysis of glycopeptides or peptides at each glycosylation site by fast atom bombardment mass spectrometry. Biochemistry 27:8618–8626

    PubMed  CAS  Google Scholar 

  • Sasaki R et al. (1987) Characterization of erythropoietin receptor of murine erythroid cells. Eur J Biochem 168:43–48

    PubMed  CAS  Google Scholar 

  • Satake et al. (1990) Chemical modification of erythropoietin: an increase in in vitro activity by guanidination. Biochim Biophys Acta 1038:125–129

    PubMed  CAS  Google Scholar 

  • Sawada K et al. (1987) Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J CUn Invest 80:357–366

    CAS  Google Scholar 

  • Sawada K et al. (1988) Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells. J Cell Physiol 137:337–345

    PubMed  CAS  Google Scholar 

  • Sawada K et al. (1989) Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insuUn for erythroid development. J CUn Invest 83:1701–1709

    CAS  Google Scholar 

  • Sawada K et al. (1990) Purification of human blood burst-forming units-erythroid and demonstration of the evolution of erythropoietin receptors. J CeU Physiol 142:219–230

    CAS  Google Scholar 

  • Sawyer ST (1989) The two proteins of the erythropoietin receptor are structurally similar. J Biol Chem 264:13343–13347

    PubMed  CAS  Google Scholar 

  • Sawyer ST, Hankins WD (1988) Erythropoietin receptor metaboUsm in erythropoietindependent ceU Unes. Blood 72:132a

    Google Scholar 

  • Sawyer ST, Krantz SB (1984) Erythropoietin stimulates Ca+ uptake in Friend virus-infected erythroid cells. J Biol Chem 259:2769–2774

    PubMed  CAS  Google Scholar 

  • Sawyer ST, Krantz SB (1986) Transferrin receptor number, synthesis, and endocytosis during erythropoietin-induced maturation of Friend virus-infected erythroid cells. J Biol Chem 261:9187–9195

    PubMed  CAS  Google Scholar 

  • Sawyer ST, Sawada KI (1989) Conversion of low affinity binding sites for erythropoietin into higher affinity binding sites by chymopapain digestion of the cell surface in mouse and human erythroid cells. Blood 74:152a

    Google Scholar 

  • Sawyer ST et al. (1987a) Large-scale procurement of erythropoietin-responsive erythroid cells: assay for biological activity of erythropoietin. Meth Enzymol 147:340–352

    PubMed  CAS  Google Scholar 

  • Sawyer ST et al. (1987b) Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J Biol Chem 262:5554–5562

    PubMed  CAS  Google Scholar 

  • Sawyer ST et al. (1987c) Identification of the receptor for erythropoietin by cross-Unking to Friend virus-infected erythroid cells. Proc Natl Acad Sci 84:3690–3694

    PubMed  CAS  Google Scholar 

  • Sawyer ST et al. (1989) Receptors for erythropoietin in mouse and human erythroid cells and placenta. Blood 74:103–109

    PubMed  CAS  Google Scholar 

  • Schooley JL (1966) The effect of erythropoietin on the growth and development of spleen colony-forming cells. J Cell Physiol 68:249–262

    CAS  Google Scholar 

  • Semenza GL et al. (1987) An Xba I polymorphism 3’ to the human erythropoietin (EPO) gene. Nucleic Acids Rec 15:6768

    CAS  Google Scholar 

  • Semenza GL et al. (1989) Polycythemia in transgenic mice expressing the human erythropoiedn gene. Proc Natl Acad Sci 86:2301–2305

    PubMed  CAS  Google Scholar 

  • Semenza GL et al. (1990) Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol Cell Biol 10:930–938

    PubMed  CAS  Google Scholar 

  • Shahidi NT (1973) Androgens and erythropoiesis. N Engl J Med 289:72–80

    PubMed  CAS  Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3’untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667

    PubMed  CAS  Google Scholar 

  • Sherman ML et al. (1988) Modulation of cyclic AMP levels and differentiation by adenosine analogs in mouse erythroleukemia cells. J Cell Physiol 134:429–436

    PubMed  CAS  Google Scholar 

  • Sherr CJ et al. (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–667

    PubMed  CAS  Google Scholar 

  • Shibuya T, Mak TW (1982) A host gene controlling early anaemia or polycythaemia induced by Friend erythroleukaemia virus. Nature 296:577–579

    PubMed  CAS  Google Scholar 

  • Shibuya T et al. (1982) Erythroleukemia induction by Friend leukemia virus. A host gene locus controlling early anemia or polycythemia and the rate of proliferation of late erythroid cells. J Exp Med 156:398–414

    PubMed  CAS  Google Scholar 

  • Shimada Y et al. (1990) Cell cycle control in lineage-restricted subclones of the IL-3-dependent cell Hne 32D. Exp Hematol 18:621a

    Google Scholar 

  • Shiozaki M et al. (1990) ProHferation and differentiation of erythroleukemia cell Hne (ELM-I-1) in response to erythropoietin and interleukin 3. Leuk Res 14: 287–291

    PubMed  CAS  Google Scholar 

  • Shoemaker CB, Mitsock LD (1986) Murine erythropoietin gene: cloning, expression, and gene homology. Mol CeU Biol 6:849–858

    CAS  Google Scholar 

  • Shortman K, Seligman K (1969) The separation of different cell classes from lymphoid organs: IIL The purification of erythroid cells by pH-induced density changes. J Cell Biol 42:783–793

    PubMed  CAS  Google Scholar 

  • Sieber F (1976) Erythroid colony growth in culture: effects of desialated erythropoietin, neuraminidase, dimethyl sulfoxide, and amphotericin B. In: Muller-Berat N (ed) Progress in differentiation research. North-HoUand, Amsterdam, pp 521–528

    Google Scholar 

  • Sieber F et al. (1981) Tumor-promoting phorbol esters stimulate myelopoiesis and suppress erythropoiesis in cultures of mouse bone marrow cells. Proc Natl Acad Sci 78:4402–4406

    PubMed  CAS  Google Scholar 

  • Sieff CA et al. (1985) Human recombinant granulocyte-macrophage colony-stimulating factor: a multilineage hematopoietin. Science 230:1171–1173

    PubMed  CAS  Google Scholar 

  • Sieff CA et al. (1986) Dependence of highly enriched human bone marrow progenitors on hemopoietic growth factors and their response to recombinant erythropoietin. J CHn Invest 77:74–81

    CAS  Google Scholar 

  • Siegel JN et al. (1990) T cell antigen receptor engagement stimulates c-raf phosphorylation and induces c-raf-associated kinase activity via a protein kinase C-dependent pathway. J Biol Chem 265:18472–18480

    PubMed  CAS  Google Scholar 

  • Singer JW, Adamson JW (1975) Steroids and hematopoiesis: 11. The effect of steroids on in vitro erythroid colony growth: evidence for different target cells for different classes of steroids. J Cell Physiol 88:135–144

    Google Scholar 

  • Singer JW, Adamson JW (1976) Steroids and hematopoiesis: III. The response of granulocytic and erythroid colony-forming cells to steroids of different classes. Blood 48:855–863

    PubMed  CAS  Google Scholar 

  • Singer JW et al. (1975) Steroids and hematopoiesis: I. The effect of steroids on in vitro erythroid colony growth: structure/activity relationships. J Cell Physiol 88:127–134

    Google Scholar 

  • Somlyo AP (1984) Cellular site of calcium regulation. Nature 309:516–517

    PubMed  CAS  Google Scholar 

  • Sonoda Y et al. (1988) Erythroid burst-promoting activity of purified recombinant human GM-CSF and interleukin-3: studies with anti-GM-CSF and anti-IL-3 sera and studies in serum-free cultures. Blood 72:1381–1386

    PubMed  CAS  Google Scholar 

  • Sorensen PHB et al. (1989) Interleukin-3, GM-CSF, and TPA induce distinct phosphorylation events in an interleukin 3-dependent multipotential cell line. Blood 73:406–418

    PubMed  CAS  Google Scholar 

  • Spivak JL (1975) Chromosomal protein synthesis during erythropoiesis in the mouse spleen. Exp Cell Res 91:253–262

    CAS  Google Scholar 

  • Spivak JL (1976) Effect of erythropoietin on chromosomal protein synthesis. Blood 47:581–592

    PubMed  CAS  Google Scholar 

  • Spivak JL (1986) The mechanism of action of erythropoietin. Int J Cell Cloning 4:139–166

    PubMed  CAS  Google Scholar 

  • Spivak JL, Hogans BB (1987) Clinical evaluation of a radioimmunoassay for serum erythropoietin using reagents derived from recombinant erythropoietin. Blood 70:143a

    Google Scholar 

  • Spivak JL, Hogans BB (1989) The in vivo metabohsm of recombinant human erythropoietin in the rat. Blood 73:90–99

    PubMed  CAS  Google Scholar 

  • Spivak JL, Peck L (1979) Chemical modification of nuclear proteins by erythropoietin. Am J Hematol 7:45–51

    PubMed  CAS  Google Scholar 

  • Spivak JL et al. (1972) Studies on splenic erythropoiesis in the mouse: 1. Ribosomal ribonucleic acid metabolism. J Lab Clin Med 79:526–540

    PubMed  CAS  Google Scholar 

  • Spivak JL et al. (1980) Suppression and potentiation of mouse hematopoietic progenitor cell proliferation by ouabain. Blood 56:315–317

    PubMed  CAS  Google Scholar 

  • Spivak JL et al. (1989) Tumor promoting phorbol esters support the in vitro proliferation of murine pluripotent hematopoietic stem cells. J Clin Invest 83: 100–107

    PubMed  CAS  Google Scholar 

  • Spivak JL et al. (1990) Cell cycle-specific effects of erythropoietin. Blood 76:121a

    Google Scholar 

  • Spivak JL et al. (1991) Erythropoietin is both a mitogen and a survival factor. Blood 77:1228–1233

    PubMed  CAS  Google Scholar 

  • Steinberg HN et al. (1976) Assessment of erythrocytic and granulocytic colony formation in an in vivo plasma clot diffusion chamber culture system. Blood 47:1041–1051

    PubMed  CAS  Google Scholar 

  • Stephenson JR, Axelrad AA (1971) Separation of erythropoietin-sensitive cells from hemopoietic spleen colony-forming stem cells of mouse fetal liver by unit gravity sedimentation. Blood 37:417–427

    PubMed  CAS  Google Scholar 

  • Stephenson JR et al. (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci 68:1542–1546

    PubMed  CAS  Google Scholar 

  • Stiles CD et al. (1980) Regulation of the Balb/c-3T3 cell cycle-effects of growth factors. J Supramolec Struct 13:489–499

    CAS  Google Scholar 

  • Stone WJ et al. (1988) Treatment of the anemia of predialysis patients with recombinant human erythropoietin: a randomized, placebo-controlled trial. Am J Med Sci 296:171–179

    PubMed  CAS  Google Scholar 

  • Strome JE et al. (1978) Evidence for the clonal nature of erythropoietic bursts: application of an in situ method for demonstrating centromeric heterochromatin in plasma cultures. Exp Hemat 6:461–467

    PubMed  CAS  Google Scholar 

  • Stuart RK, Hamilton J A (1980) Tumor-promoting phorbol esters stimulate hematopoietic colony formation in vitro. Science 208:402–404

    PubMed  CAS  Google Scholar 

  • Suda T et al. (1983) Proliferative kinetics and differentiation of murine blast cell colonies in culture: evidence for variable Go periods and constant doubling rates of early pluripotent hemopoietic progenitors. J Cell Physiol 117:308–318

    PubMed  CAS  Google Scholar 

  • Suda J et al. (1986) Purified interleukin-3 and erythropoietin support the terminal differentiation of hemopoietic progenitors in serum-free culture. Blood 67: 1002–1006

    PubMed  CAS  Google Scholar 

  • Sytkowski AJ, Donahue KA (1987) Immunochemical studies of human erythropoietin using site-specific anti-peptide antibodies. J Biol Chem 262:1161–1165

    PubMed  CAS  Google Scholar 

  • Sytkowski A J et al. (1980) Erythroid differentiation of clonal Rauscher erythroleukemia cells in response to erythropoietin or dimethyl sulfoxide. Science 210:74–76

    PubMed  CAS  Google Scholar 

  • Taga T et al. (1989) Interleukin-6 triggers the association of its receptor with a possible signal transducer, gpl30. Cell 58:573–581

    PubMed  CAS  Google Scholar 

  • Takeuchi M et al. (1988) Comparative study of the asparagine-Unked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J Biol Chem 263:3657–3663

    PubMed  CAS  Google Scholar 

  • Takeuchi M et al. (1990) Role of sugar chains in the in vitro biological activity of human erythropoietin produced in recombinant Chinese hamster ovary cells. J Biol Chem 265:12127–12130

    PubMed  CAS  Google Scholar 

  • Tarbutt RG, Cole RJ (1970) Cell populadon kinetics of erythroid tissue in the liver of foetal mice. J Embryol Exp Morph 24:429–446

    PubMed  CAS  Google Scholar 

  • Tavassoli M (1979) The marrow-blood barrier. Brit J Haematol 41:297–302

    CAS  Google Scholar 

  • Tenaglia AN et al. (1985) Amphotericin-B and monensin potendadon of murine erythropoiesis in vitro: a possible role for sodium ions. Exp Hematol 13: 512–519

    PubMed  CAS  Google Scholar 

  • Thompson ST et al. (1988) A search for the second messenger of erythropoietin. FASEB J 2:813a

    Google Scholar 

  • Threadgill GJ, Arnstein HRV (1985) Changes in histone acetylation during the development of rabbit bone marrow erythroid cells. Biochim Biophys Acta 847:228–234

    PubMed  CAS  Google Scholar 

  • Till JE et al. (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cell. Proc Natl Acad Sci 51:29–36

    PubMed  CAS  Google Scholar 

  • Todokoro K, Ikawa Y (1986) Sequential expression of proto-oncogenes during a mouse erythroleukemia cell differentiation. Biochem Biophys Res Comm 135:1112–1118

    PubMed  CAS  Google Scholar 

  • Todokoro K et al. (1987) Specific binding of erythropoietin to its receptor on responsive mouse erythroleukemia cells. Proc Natl Acad Sci 84:4126–4130

    PubMed  CAS  Google Scholar 

  • Todokoro K et al. (1988a) Characterizadon of erythropoietin receptor on erythropoiedn-unresponsive mouse erythroleukemia cells. Biochim Biophys Acta 943:326–330

    PubMed  CAS  Google Scholar 

  • Todokoro K et al. (1988b) Down-reguladon of c-myb gene expression is a prerequisite for erythropoietin-induced erythroid differendation. Proc Natl Acad Sci 85:8900–8904

    PubMed  CAS  Google Scholar 

  • Tojo A et al. (1987) Identificadon of erythropoiedn receptors on fetal liver erythroid cells. Biochem Biophys Res Comm 148:443–448

    PubMed  CAS  Google Scholar 

  • Tojo A et al. (1988) Induction of the receptor for erythropoietin in murine erythroleukemia cells after dimethyl sulfoxide treatment. Cane Res 48: 1818–1822

    CAS  Google Scholar 

  • Tong BD, Goldwasser E (1981) The formation of erythrocyte membrane proteins during erythropoietin-induced differentiation. J Biol Chem 256:12666–12672

    PubMed  CAS  Google Scholar 

  • Tsai SF et al. (1989) Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammahan cells. Nature 339:446–451

    PubMed  CAS  Google Scholar 

  • Tsao CJ et al. (1988) Expression of the functional erythropoietin receptors on interleukin 3-dependent murine cell lines. J Immunol 140:89–93

    PubMed  CAS  Google Scholar 

  • Tsuda H (1989) Mode of action of erythropoietin (Epo) in an Epo-dependent murine cell line: I. Involvement of adenosine 3’,5’-cyclic monophosphate not as a second messenger but as a regulator of cell growth. Exp Hematol 17:211–217

    PubMed  CAS  Google Scholar 

  • Tsuda H et al. (1989) Mode of action of erythropoietin (Epo) in an Epodependent murine cell line: II. Cell cycle dependency of Epo action. Exp Hematol 17: 218–222

    PubMed  CAS  Google Scholar 

  • Tsudo M et al. (1986) Demonstration of a non-tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proc Natl Acad Sci 83:9694–9698

    PubMed  CAS  Google Scholar 

  • Tushinski RJ, Stanley ER (1983) The regulation of macrophage protein turnover by a colony stimulating factor (CSF-1). J Cell Physiol 116:67–75

    PubMed  CAS  Google Scholar 

  • Udupa KB, Lipschitz DA (1986) Studies on the kinetics of the erythroid colony-forming cell. Exp Hematol 14:343–350

    PubMed  CAS  Google Scholar 

  • Udupa KB, Reissmann KR (1977) In vivo and in vitro effect of bacterial endotoxin on erythroid precursors (CFU-e and ERC) in the bone marrow of mice. J Lab Clin Med 89:278–284

    PubMed  CAS  Google Scholar 

  • Udupa KB, Reissmann KR (1978) Cell kinetics of erythroid colony-forming cells (CFU-E) studied by hydroxyurea injections and sedimentation velocity profile. Exp Hematol 6:398–404

    PubMed  CAS  Google Scholar 

  • Udupa KB, Reissmann KR (1979) In vivo erythropoietin requirements of regenerating erythroid progenitors (BFU-e, CFU-e) in bone marrow of mice. Blood 53:1164–1171

    PubMed  CAS  Google Scholar 

  • Umemura T et al. (1986) Expression of c-myc oncogene during differentiation of human burst-forming unit, erythroid (BFU-E). Biochem Biophys Res Comm 135:521–526

    PubMed  CAS  Google Scholar 

  • Umemura T et al. (1988) Hematopoietic growth factors (BPA and EPO) induce the expressions of c-myc and c-fos proto-oncogenes in normal human erythroid progenitors. Leuk Res 12:187–194

    PubMed  CAS  Google Scholar 

  • Umemura T et al. (1989) The mechanism of expansion of late erythroid progenitors during erythroid regeneration: target cells and effects of erythropoietin and interleukin-3. Blood 73:1993–1998

    PubMed  CAS  Google Scholar 

  • Urabe A et al. (1979) Dexamethasone and erythroid colony formation: contrasting effects in mouse and human bone marrow cells in culture. Brit J Haematol 43:479–480

    CAS  Google Scholar 

  • Uzumaki M et al. (1989) Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci 86:9323–9326

    PubMed  CAS  Google Scholar 

  • Vadgama JV et al. (1987) Characterization of amino acid transport during erythroid cell differentiation. J Biol Chem 262:13273–13284

    PubMed  CAS  Google Scholar 

  • Vainchenker W et al. (1982) Clonal expression of the Tn antigen in erythroid and granulocyte colonies and its application to determination of the clonality of the human megakaryocyte colony assay. J Clin Invest 69:1081–1091

    PubMed  CAS  Google Scholar 

  • Vairo G, Hamilton J A (1988) Activation and proliferation signals in murine macrophages: stimulation of Na+, K+-ATPase activity by hemopoietic growth factors and other agents. J Cell Physiol 134:13–24

    PubMed  CAS  Google Scholar 

  • Valladares L, Minguell J (1975) Characterization of a nuclear receptor for testosterone in rat bone marrow. Steroids 25:13–21

    PubMed  CAS  Google Scholar 

  • Valtieri M et al. (1989) Erythropoietin alone induces erythroid burst formation by human embryonic but not adult BFU-E in unicellular serum-free culture. Blood 74:460–470

    PubMed  CAS  Google Scholar 

  • Van Zant G, Goldwasser E (1977) The effects of erythropoietin in vitro on spleen colony-forming cells. J Cell Physiol 90:241–252

    PubMed  Google Scholar 

  • Van Zant G, Goldwasser E (1979) Suppression of erythroid differentiation by colony-stimulating factor. In: Baum ST, Ledney SE (eds) Experimental hematology today. Springer, Berhn Heidelberg New York, pp 63–70

    Google Scholar 

  • Wagemaker G, Visser TP (1980) Erythropoietin-independent regeneration of erythroid progenitor cells following multiple injections of hydroxyurea. Cell Tissue Kinet 13:505–517

    PubMed  CAS  Google Scholar 

  • Wall L et al. (1988) The human B-globin gene 3’ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev 2:1089–1100

    PubMed  CAS  Google Scholar 

  • Waneck GL et al. (1986) Abelson virus drives the differentiation of Harvey virus-infected erythroid cells. Cell 44:337–344

    PubMed  CAS  Google Scholar 

  • Wang FF et al. (1985) Some chemical properties of human erythropoietin. Endocrinology 116:2286–2292

    PubMed  CAS  Google Scholar 

  • Watkins PC et al. (1986) Regional assignment of the erythropoietin gene to human chromosome region 7pter…. q22. Cytogenet Cell Genet 42:214–218

    PubMed  CAS  Google Scholar 

  • Weiss TL et al. (1985) The frequency of bone marrow cells that bind erythropoietin. J Cell Biochem 27:57–65

    PubMed  CAS  Google Scholar 

  • Weiss TL et al. (1989) Erythropoietin binding and induced differentiation of Rauscher erythroleukemia cell Hne red 5–1.5. J Biol Chem 264:1804–1810

    PubMed  CAS  Google Scholar 

  • WendUng F et al. (1985) A self-renewing, bipotential erythroid/mast cell progenitor in continuous cultures of normal murine bone marrow. J Cell Physiol 125:10–18

    Google Scholar 

  • Westbrook CA et al. (1984) Purificadon and characterizadon of human T-lymphocyte-derived erythroid-potendadng activity. J Biol Chem 259:9992–9996

    PubMed  CAS  Google Scholar 

  • Wheeler EF et al. (1987) The v-fms oncogene induces factor-independent growth and transformation of the interleukin-3-dependent myeloid cell line FDC-Pl. Mol Cell Biol 7:1673–1680

    PubMed  CAS  Google Scholar 

  • Whetton AD et al. (1986) The haemopoietic growth factors interleukin 3 and colony stimulating factor-1 sdmulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages. EMBO J 5: 3281–3286

    CAS  Google Scholar 

  • Whetton AD, Dexter TM (1983) Effect of haematopoietic cell growth factor on intracellular ATP levels. Nature 303:629–631

    PubMed  CAS  Google Scholar 

  • Williams GT et al. (1990) Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343:76–79

    PubMed  CAS  Google Scholar 

  • Winkelmann JC et al. (1990) The gene for the human erythropoietin receptor: analysis of the coding sequence and assignment to chromosome 19p. Blood 76:24–30

    PubMed  CAS  Google Scholar 

  • Wognum AW et al. (1990) Detection and isolation of the erythropoietin receptor using biotinylated erythropoietin. Blood 76:697–705

    PubMed  CAS  Google Scholar 

  • Wojchowski D et al. (1987) Active human erythropoietin expressed in insect cells using a baculovirus vector: oxole for N-linked oligosaccharide. Biochim Biophys Acta 910:224–232

    PubMed  CAS  Google Scholar 

  • Wolf M et al. (1985) A model for intracellular translocation of protein kinase C involving synergism between Ca+ and phorbol esters. Nature 317:546–549

    PubMed  CAS  Google Scholar 

  • Yang YC et al. (1986) Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10

    PubMed  CAS  Google Scholar 

  • Yarden Y, Ullrich A (1988) Molecular analysis of signal transduction by growth factors. Biochemistry 27:3113–3119

    PubMed  CAS  Google Scholar 

  • Yelamarty RV et al. (1990) Three-dimensional intracellular calcium gradients in single human burst-forming units-erythroid-derived erythroblasts induced by erythropoietin. J CHn Invest 85:1799–1809

    CAS  Google Scholar 

  • Yoshida K, Davis PJ (1977) Binding of thyroid hormone by erythrocyte cytoplasmic proteins. Biochem Biophys Res Comm 78:697–705

    PubMed  CAS  Google Scholar 

  • Yoshimura A et al. (1990) Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc Nad Acad Sci 87:4139–4143

    CAS  Google Scholar 

  • Youssoufian H et al. (1990) Structure and transcription of the mouse erythropoietin receptor gene. Mol Cell Biol 10:3675–3682

    PubMed  CAS  Google Scholar 

  • Yu J et al. (1987) Importance of FSH-releasing protein and inhibin in erythro-differentiation. Nature 330:765–767

    PubMed  CAS  Google Scholar 

  • Zerial M et al. (1987) Phosphorylation of the human transferrin receptor by protein kinase C is not required for endocytosis and recycling in mouse 3T3 cells. EMBO J 6:2661–2667

    CAS  Google Scholar 

  • Zon LI et al. (1990) Regulation of the erythropoietin receptor promoter by the cell-specific transcription factor GF-1 (ERYF-1, NF-El). Blood 76:174a

    Google Scholar 

  • Zucali JR et al. (1974) Separation of erythropoietin-responsive cells (ERC) from rat bone marrow. Exp Hemat 2:250–258

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spivak, J.L. (1992). The Mechanism of Action of Erythropoietin: Erythroid Cell Response. In: Fisher, J.W. (eds) Biochemical Pharmacology of Blood and Bloodforming Organs. Handbook of Experimental Pharmacology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75865-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75865-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75867-6

  • Online ISBN: 978-3-642-75865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics