Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 101))

  • 141 Accesses

Abstract

Blood cells have been a major target of scientific investigation and clinical interest throughout the history of medicine. This focus reflects in part the unique properties of mature blood cells, which continue to command the attention of biophysicists, membrane biologists, geneticists, immunologists, and developmental biologists, as well as clinicians. In addition, many of the functions of blood cells, e.g., oxygen delivery to the peripheral tissues, maintenance of hemostasis, and infection control, are key to survival itself, and the crucial roles of these cells rapidly manifest themselves whenever the process of blood cell production is compromised or aberrant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson S, Miller RG, Phillips RA (1977) The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med 145:1567–1579

    PubMed  CAS  Google Scholar 

  • Anderson WF, Beckman B, Beltran G, Fisher JW, Stuckey WJ, (1982) Erythropoietin-independent erythroid colony formation in patients with erythroleukaemia (M6) and related disorders. Br J Haematol 52:311–317

    PubMed  CAS  Google Scholar 

  • Andrews RG, Singer JW, Bernstein ID (1989) Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med 169:1721–1731

    PubMed  CAS  Google Scholar 

  • Ash RC, Detrick RA, Zanjani ED, (1981) Studies of human pluripotential hemopoietic stem cells (CFU-GEMM) in vitro. Blood 58:309–316

    PubMed  CAS  Google Scholar 

  • Aye MT (1976) Erythroid colony formation in cultures of human marrow: effect of leukocyte conditioned medium. J Cell Physiol 91:69–78

    Google Scholar 

  • Becker AJ, McCulloch EA, Siminovitch L, Till JE (1965) The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood 26:296–308

    PubMed  CAS  Google Scholar 

  • Boggs DR, Boggs SS, Saxe OS, Gress RA, Confield DR, (1982) Hematopoietic stem cells with high proliferative potential. Assay of their concentration in marrow by the frequency and duration of cure of WAV’ mice. J Clin Invest 70:242–253

    PubMed  CAS  Google Scholar 

  • Bol S, Williams N (1980) The maturation state of three types of granulocyte/macrophage progenitor cells from mouse bone marrow. J Cell Physiol 102:233–243

    PubMed  CAS  Google Scholar 

  • Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44:287–300

    PubMed  CAS  Google Scholar 

  • Brandwein JM, Horsman DE, Eaves AC, Eaves CE, Massing BG, Wadsworth LD, Rogers PCJ, Kalousek DK (1990) Childhood myelodysplasia: suggested classification as myelodysplastic syndromes. Am J Pediatr Hematol Oncol 12:63–70

    PubMed  CAS  Google Scholar 

  • Bussolino F, Wang JM, Defilippi P et al. (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–472

    PubMed  CAS  Google Scholar 

  • Cashman JD, Eaves AC, Eaves CJ (1985) Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood 66:1002–1005

    PubMed  CAS  Google Scholar 

  • Cashman JD, Eaves AC, Raines EW, Ross R, Eaves CJ, (1990) Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-p. Blood 75:96–101

    PubMed  CAS  Google Scholar 

  • Cerretti DP, Wignall J, Anderson D, Tushinski RJ, Gallis BM, Stya M, Gillis S, Urdal DL, Cosman D (1988) Human macrophage-colony stimulating factor: alternative RNA and protein processing from a single gene. Mol Immunol 25:761–770

    PubMed  CAS  Google Scholar 

  • Clark SC, Kamen R (1987) The human hematopoietic colony-stimulating factors. Science 236:1229–1237

    PubMed  CAS  Google Scholar 

  • Dedhar S, Gaboury L, Galloway P, Eaves C (1988) Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Proc Natl Acad Sci USA 85:9253–9257

    PubMed  CAS  Google Scholar 

  • Dexter TM, Spooncer E, Toksoz D, Lajtha LG (1980) The role of cells and their products in the regulation of in vitro stem cell proliferation and granulocyte development. J Supramol Struc 13:513–524

    CAS  Google Scholar 

  • Dick JE, Magli MC, Huszar D, Phillips RA, Bernstein A (1985) Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/W mice. Cell 42:71–79

    PubMed  CAS  Google Scholar 

  • Donahue RE, Yang YC, Paul S, Clark SC (1989) Human interleukin-9 (IL-9) is capable of stimulating erythroid colony formation in vitro. Blood 74 (suppl 1):116a

    Google Scholar 

  • Dube ID, Eaves CJ, Kalousek DK, Eaves AC (1981) A method for obtaining high quality chromosome preparations from single hemopoietic colonies on a routine basis. Cancer Genet Cytogenet 4:157–168

    PubMed  CAS  Google Scholar 

  • Eaves AC, Eaves CJ (1984) Erythropoiesis in culture. In: McCulloch EA (ed) Cell culture techniques — clinics in haematology. WB Saunders, Eastbourne, pp 371–391

    Google Scholar 

  • Eaves AC, Henkelman DH, Eaves CJ (1980) Abnormal erythropoiesis in the myeloproliferative disorders: an analysis of underlying cellular and humoral mechanisms. Exp Hematol 8:235–245

    PubMed  Google Scholar 

  • Eaves AC, Cashman JD, Gaboury LA, Eaves CJ (1987) Clinical significance of long-term cultures of myeloid blood cells. CRC Crit Rev Oncol Hematol 7: 125–138

    CAS  Google Scholar 

  • Eaves AC, Krystal G, Cashman JD, Eaves CJ (1988) Polycythemia vera: in vitro analysis of regulatory defects. In: Zanjani ED, Tavassoli M, Ascensao JD (eds) Regulation of erythropoiesis. PMA Publishing, New York, pp 523–535

    Google Scholar 

  • Eaves CJ, Eaves AC, (1978) Erythropoietin (Ep) dose-response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood 52:1196–1210

    PubMed  CAS  Google Scholar 

  • Eaves CJ, Eaves AC (1985) Erythropoiesis. In: Golde DW, Takaku F (eds) Hemato-poietic stem cells. M Dekker, New York, pp 19–43

    Google Scholar 

  • Eaves CJ, Eaves AC, (1987) Cell culture studies in CML. In: Goldman JM, (ed) Bailliere’s clinical haematology vol 1, no 4. Chronic myeloid leukaemia. Bailliere Tindall, London, pp 931–961

    Google Scholar 

  • Eaves CJ, Humphries RK, Eaves AC (1979) In vitro characterization of erythroid precursor cells and the erythropoietic differentiation process. In: Stamatoyannopoulos G, Nienhuis AW (eds) Cellular and molecular regulation of hemoglobin switching. Grune and Stratton, New York, pp 251–273

    Google Scholar 

  • Eaves CJ, Humphries RK, Eaves AC (1981) Self-renewal of hemopoietic stem cells: evidence for stochastic regulatory processes. In: Stamatoyannopoulos G, Nienhuis AW (eds) Hemoglobins in development and differentiation. Alan R Liss, New York, pp 35–44

    Google Scholar 

  • Eaves CJ, Krystal G, Eaves AC (1984) Erythropoietic cells. In: Baum SJ (ed) Bibliotheca haematologica — current methodology in experimental hematology, vol 48. Karger, Basel, pp 81–111

    Google Scholar 

  • Erslev AJ, Caro J (1983) Pathophysiology of erythropoietin. In: Dunn CDR (ed) Current concepts in erythropoiesis. John Wiley & Sons Chichester, pp 1–19

    Google Scholar 

  • Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW, (1987) Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Resuhs of a combined phase I and II clinical trial. N Engl J Med 316:73–78

    PubMed  CAS  Google Scholar 

  • Fauser A A, Messner HA, (1979) Proliferative state of human pluripotent hemopoietic progenitors (CFU-GEMM) in normal individuals and under regenerative conditions after bone marrow transplantation. Blood 54:1197–1200

    PubMed  CAS  Google Scholar 

  • Fräser C, Eaves CJ, Kalousek DK (1987) Fluorodeoxyuridine synchronization of hemopoietic colonies. Cancer Genet Cytogenet 24:1–6

    PubMed  Google Scholar 

  • Fraser CC, Eaves CJ, Szilvassy SJ, Humphries RK (1990) Expansion in vitro of retrovirally marked totipotent hematopoietic stem cells. Blood 76:1071–1076

    PubMed  CAS  Google Scholar 

  • Gewirtz AM, Hoffman R (1990) Human megakaryocyte production: cell biology and clinical considerations. Hematol Oncol Clin North Am 4(l):43–63

    PubMed  CAS  Google Scholar 

  • Gidali J, Lajtha LG (1972) Regulation of haemopoietic stem cell turnover in partially irradiated mice. Cell Tissue Kinet 5:147–157

    PubMed  CAS  Google Scholar 

  • Goodwin RG, Lupton S, Schmierer A, Hjerrild KJ, Jerzy R, Clevenger W, Gillis S, Cosman D, Namen AE (1989) Molecular cloning and growth factor activity on human and murine B-lineage cells. Proc Natl Acad Sei USA 86:302–306

    CAS  Google Scholar 

  • Gordon MY, Hibbin JA, Kearney LU, Gordon-Smith EC, Goldman JM (1985) Colony formation by primitive haemopoietic progenitors in cocultures of bone marrow cells and stromal cells. Br J Haematol 60:129–136

    PubMed  CAS  Google Scholar 

  • Gordon MY, Riley GP, Greaves MF (1987a) Plastic-adherent progenitor cells in human bone marrow. Exp Hematol 15:772–778

    PubMed  CAS  Google Scholar 

  • Gordon MY, Riley GP, Watt SM, Greaves MF, (1987b) Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 326:403–405

    PubMed  CAS  Google Scholar 

  • Graham GJ, Wright EG, Hewick R, Wölpe SD, Wilkie NM, Donaldson D, Lorimore S, Pragnell IB (1990) Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344:442–444

    PubMed  CAS  Google Scholar 

  • Greenberg PL (1986) In vitro culture techniques defining biological abnormalities in the myelodysplastic syndromes and myeloproliferative disorders. Clin Haematol 15:973–993

    PubMed  CAS  Google Scholar 

  • Gregory CJ (1976) Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J Cell Physiol 89:289–301

    PubMed  CAS  Google Scholar 

  • Gregory CJ, Eaves AC (1977) Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood 49:855–864

    PubMed  CAS  Google Scholar 

  • Gregory CJ, Henkelman RM (1977) Relationships between early hemopoietic progenitor cells determined by correlation analysis of their numbers in individual spleen colonies. In: Baum SJ, Ledney GD (eds) Experimental hematology today. Springer, Berlin Heidelberg New York, pp 93–101

    Google Scholar 

  • Guilbert LJ, Iscove NN (1976) Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoietic cell cultures. Nature 263:594–595

    PubMed  CAS  Google Scholar 

  • Hankins WD, Kaminchik J, Luna J (1983) Transformation of adult and fetal hemopoietic tissues with RNA tumor viruses. In: Stamatoyannopoulos G, Nienhuis AW (eds) Globin gene expression and hemopoietic differentiation. Progress in clinical and biological research, vol 134. Alan R Liss, New York, pp 245–261

    Google Scholar 

  • Hogge DE, Shannon KM, Kalousek DK, Schonberg S, Schaffner V, Zoger S, Eaves CJ, Eaves AC (1987) Juvenile monosomy 7 syndrome: evidence that the disease originates in a pluripotent hemopoietic stem cell. Leuk Res 11:705–709

    PubMed  CAS  Google Scholar 

  • Hultner L, Moeller J, Schmitt E, Jager G, Reisbach G, Ring J, Dormer P (1989) Thiol-sensitive mast cell lines derived from mouse bone marrow resond to a mast cell growth-enhancing activity different from both IL-3 and IL-4. J Immunol 142:3440–3446

    PubMed  CAS  Google Scholar 

  • Humphries RK, Jacky PB, Dill FJ, Eaves AC, Eaves CJ (1979) CFU-S in individual erythroid colonies derived in vitro from adult mouse marrow. Nature 279: 718–720

    PubMed  CAS  Google Scholar 

  • Humphries RK, Eaves AC, Eaves CJ (1980) Expression of stem cell behaviour during macroscopic burst formation in vitro. In: Baum SJ, Ledney GD, van Bekkum DW (eds) Experimental hematology today. Karger, New York, pp 39–46

    Google Scholar 

  • Humphries RK, Eaves AC, Eaves CJ (1981) Self-renewal of hemopoietic stem cells during mixed colony formation in vitro. Proc Nad Acad Sci USA 78: 3629–3633

    CAS  Google Scholar 

  • Iscove NN, Till JE, McCulloch EA (1970) The proliferative states of mouse granulopoietic progenitor cells. Proc Soc Exp Biol Med 134:33–36

    PubMed  CAS  Google Scholar 

  • Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF, Kawakita M, Shimizu T, Miyake T (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806–810

    PubMed  CAS  Google Scholar 

  • Keller G, Paige C, Gilboa E, Wagner EF (1985) Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318:149–154

    PubMed  CAS  Google Scholar 

  • Keller JR, Mantel C, Sing GK, Ellingsworth LR, Ruscetti SK, Ruscetti FW (1988) Transforming growth factor ßl selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines. J Exp Med 168:737–750

    PubMed  CAS  Google Scholar 

  • Krantz SB (1968) Response of polycythemia vera marrow to erythropoietin in vitro. J Lab Clin Med 71:999–1012

    PubMed  CAS  Google Scholar 

  • Lansdorp PL, Sutherland HJ, Eaves CJ (1990) Selective expression of CD45 iso-forms on functional subpopulations of CD34-I-hemopoietic cells from human bone marrow. J Exp Med 172:363–366

    PubMed  CAS  Google Scholar 

  • Leary AG, Ogawa M (1987) Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood 69:953–956

    PubMed  CAS  Google Scholar 

  • Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–927

    PubMed  CAS  Google Scholar 

  • Levin J (1983) Murine megakaryocytopoiesis in vitro: an analysis of culture systems used for the study of megakaryocyte colony-forming cells and of the characteristics of megakaryocyte colonies. Blood 61:617–623

    PubMed  CAS  Google Scholar 

  • Lim B, Jamal N, Messner HA (1984) Flexible association of hemopoietic differentiation programs in multilineage colonies. J Cell Physiol 121:291–297

    PubMed  CAS  Google Scholar 

  • Long MW, Heffner CH, Gragowski LL (1986) In vitro differences in responsiveness of early (BFU-Mk) and late (CFU-Mk) murine megakaryocyte progenitor cells. In: Levine RI (ed) Megakaryocyte Development and Function. Alan R Liss, New York, pp 179–186

    Google Scholar 

  • Magli MC, Iscove NN, Odartchenko N (1982) Transient nature of early haematopoietic spleen colonies. Nature 295:527–529

    PubMed  CAS  Google Scholar 

  • Malipiero UV, Frei K, Fontana A (1990) Production of hemopoietic colony-stimulating factors by astrocytes. J Immunol 144:3816–3821

    PubMed  CAS  Google Scholar 

  • McCulloch EA, Siminovitch L, Till JE (1964) Spleen colony formation in anemic mice of genotype WAV. Science 144:844–846

    PubMed  CAS  Google Scholar 

  • McCulloch EA, Siminovitch L, Till JE, Russell ES, Bernstein SE (1965) The cellular basis of the genetically determined hemopoietic defect in anaemic mice of genotype Sl/Sld. Blood 26:399–410

    PubMed  CAS  Google Scholar 

  • McLeod DL, Shreeve MM, Axelrad A A (1974) Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood 44:517–534

    CAS  Google Scholar 

  • Messner HA (1984) Human stem cells in culture. Clin Haematol 13:393–404

    PubMed  CAS  Google Scholar 

  • Messner HA, Jamal N, Izaguirre C (1982) The growth of large megakaryocyte colonies from human bone marrow. J Cell Physiol [Suppl]l:45–51

    CAS  Google Scholar 

  • Messner HA, Solberg LA, Jamal N (1985) Human megakaryocytopoiesis in cell culture. In: Cronkite EP, Daniak N, McCaffrey RP, Palek J, Quesenberry PJ (eds) Hematopoietic stem cell physiology. Progress in clinical and biological research, vol 184. Aln R Liss, New York, pp 215–222

    Google Scholar 

  • Metcalf D (1977) Hemopoietic colonies. In vitro cloning of normal and leukemic cells. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Miyake T, Kung CKH, Goldwasser E (1977) Purification of human erythropoietin. J Biol Chem 252:5558–5564

    PubMed  CAS  Google Scholar 

  • Nakahata T, Ogawa M (1982a) Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multi-potential hemopoietic colonies. Proc Nad Acad Sci USA 79:3843–3847

    CAS  Google Scholar 

  • Nakahata T, Ogawa M (1982b) Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest 70:1324–1328

    PubMed  CAS  Google Scholar 

  • Nathan DG, Chess L, Hillman DG (1978) Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro. J Exp Med 47:324–339

    Google Scholar 

  • Ogawa M, Suda T, Suda J (1984) Differentiation and proliferative kinetics of hemopoietic stem cells in culture. In: Young NS, Levine AS, Humphries RK (eds) Aplastic anemia stem cell biology and advances in treatment. Alan R Liss, New York, pp 35–43

    Google Scholar 

  • Ploemacher RE, Brons NHC (1988) Isolation of hemopoietic stem cell subsets from murine bone marrow: II. Evidence for an early precursor of day-12 CFU-S and cells associated with radioprotective ability. Exp Hematol 16:27–32

    PubMed  CAS  Google Scholar 

  • Pluznik DH, Sachs L (1965) The cloning of normal ’mast’ cells in tissue culture. J Cell Physiol 66:319–324

    PubMed  CAS  Google Scholar 

  • Prchal JF, Axelrad AA (1974) Bone marrow responses in polycythemia vera. N Engl J Med 290:1382

    PubMed  CAS  Google Scholar 

  • Prchal JF, Adamson JW, Murphy S, Steinmann L, Fialkow PJ (1978) Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin. J Clin Invest 61:1044–1047

    PubMed  CAS  Google Scholar 

  • Prchal JT, Throckmorton DW, Caroll AJ, Fuson EW, Gams RA, Prchal JF (1978) A common progenitor for human myeloid and lymphoid cells. Nature 274: 590–591

    PubMed  CAS  Google Scholar 

  • Raskind WH, Fialkow PJ (1987) The use of cell markers in the study of human hematopoietic neoplasia. Adv Cancer Res 49:127–167

    PubMed  CAS  Google Scholar 

  • Rettenmier CW, Roussel MF, Ashmun RA, Ralph P, Price K, Sherr CJ (1987) Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and down-modulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes. Mol Cell Biol 7: 2378–2387

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1988) Transforming growth factor (3. Adv Cancer Res 51:107–145

    PubMed  CAS  Google Scholar 

  • Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter TM (1988) Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332:376–378

    PubMed  CAS  Google Scholar 

  • Sawada K, Krantz SB, Dessypris EN, Koury ST, Sawyer ST (1989) Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. J Clin Invest 83:1701–1709

    PubMed  CAS  Google Scholar 

  • Seiler FR, Henney CS, Krumwieh D, Schulz G (1988) Colony stimulating factors — CSF. Behring Institute Mitteilungen, no 83. Medizinische Verlagsgesellschaft, Marburg

    Google Scholar 

  • Senn JS, McCulloch EA, Till JE (1967) Comparison of colony-forming ability of normal and leukaemic human marrow in cell culture. Lancet 2:597–598

    PubMed  CAS  Google Scholar 

  • Sonoda Y, Ogawa M (1988) Serum-free culture of human hemopoietic progenitors in attenuated culture media. Am J Hematol 28:227–231

    PubMed  CAS  Google Scholar 

  • Suda T, Suda J, Ogawa M (1984) Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci USA 81:2520–2524

    PubMed  CAS  Google Scholar 

  • Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570

    PubMed  CAS  Google Scholar 

  • Sutherland HJ, Lansdorp PM, Henkelman D, Eaves AC, Eaves CJ (1990) Func-tional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 87:3584–3588

    PubMed  CAS  Google Scholar 

  • Sutherland HJ, Eaves CJ, Lansdorp PM, Thacker JD, Hogge DE (1991) Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78:666–672

    PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Fraser CC, Eaves CJ, Lansdorp PM, Eaves AC, Humphries RK (1989a) Retrovirus-mediated gene transfer to purified hemopoietic stem cells with long-term lympho-myelopoietic repopulating ability. Proc Natl Acad Sci USA 86:8798–8802

    PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Lansdorp PM, Humphries RK, Eaves AC, Eaves CJ (1989b) Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood 74:930–939

    PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 87:8736–8740

    PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51:29–36

    PubMed  CAS  Google Scholar 

  • Till JE, Lan S, Buick RN, Sousan P, Curtis JE, McCulloch EA (1978) Approches to the evaluation of human hematopoietic stem-cell function. In: Clarkson B, Marks PA, Till JE (eds) Differentiation of normal and neoplastic hematopoietic cells, vol 5. Cold Spring Harbor Laboratory, New York, pp 81–92

    Google Scholar 

  • Turhan AG, Humphries RK, Phillips GL, Eaves AC, Eaves CJ (1989) Clonal hematopoiesis demonstrated by X-linked DNA polymorphisms after allogeneic bone marrow transplantation. N Engl J Med 320:1655–1661

    PubMed  CAS  Google Scholar 

  • Whang J, Frei E III, Tjio JH, Carbone PP, Brecher G (1963) The distribution of the Philadelphia chromosome in patients with chronic myelogenous leukemia. Blood 22:664–673

    PubMed  CAS  Google Scholar 

  • Winton EF, Colenda KW (1987) Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxy-cyclophosphamide. Exp Hematol 15:710–714

    PubMed  CAS  Google Scholar 

  • Wu AM, Till JE, Siminovitch L, McCulloch EA (1968) Cytological evidence for a relationship between normal hemopoietic colony-forming cells and cells of the lymphoid system. J Exp Med 127:455–464

    PubMed  CAS  Google Scholar 

  • Yang Y-C, Ricciardi S, Ciarletta A, Calvetti J, Kelleher K, Clark SC (1989) Expression cloning of a cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74:1880–1884

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eaves, C.J., Eaves, A.C. (1992). Fundamental Control of Hematopoiesis. In: Fisher, J.W. (eds) Biochemical Pharmacology of Blood and Bloodforming Organs. Handbook of Experimental Pharmacology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75865-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75865-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75867-6

  • Online ISBN: 978-3-642-75865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics