Peptide Hormones

  • Theodor Wieland
  • Miklos Bodanszky


The development of peptide chemistry in the second half of this century is so closely related to hormone research that it appears necessary to dedicate a chapter to some historically significant accomplishments in this area.


Vasoactive Intestinal Peptide Human Insulin Disulfide Bridge Peptide Hormone Arginine Vasopressin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.M. Bayliss, E.H. Starling, On the causation of the so-called “peripheral reflex secretion” of the pancreas. Proc. Roy. Soc. 60: 352–353 (1902).Google Scholar
  2. 2.
    J.E. Jorpes, V. Mutt, Secretin and cholecystokinin. In Handbook of Exptl. Pharmacology, vol.34 (J.E. Jorpes and V. Mutt eds., Springer Verlag, Berlin 1973) pp. 1–179.Google Scholar
  3. 3.
    J.S. Edkins, On the chemical mechanism of gastric secretion. Proc. Roy. Soc. 76: 376–379 (1905).CrossRefGoogle Scholar
  4. 4.
    R.A. Gregory, H.J. Tracy, The preparation and properties of gastrin. J. Physiol. 156: 523–543 (1961); R.A. Gregory, H.J. Tracy, The contribution and properties of two gastrins extracted from hog antral mucosa. Gut 5:103-117 (1964).PubMedGoogle Scholar
  5. 5.
    H. Gregory, P.M. Hardy, D.S. Jones, G.W. Kenner, R.C. Sheppard, The antral hormone gastrin. Structure of gastrin. Nature 204: 931–933 (1964).PubMedCrossRefGoogle Scholar
  6. 6.
    J.C. Anderson, M.A. Barton, R.A. Gregory, P.M. Hardy, G.W. Kenner, J.K. McLeod, J. Preston, R.C. Sheppard, J.S. Morley, The antral hormone gastrin. II. Synthesis of gastrin. Nature (Lond.) 204: 933–934 (1964).CrossRefGoogle Scholar
  7. 7.
    O. Kamm, T.B. Aldrich, I.W. Grote, L.W. Rowe, E.P. Bugbee, The active principles of the posterior lobe of the pituitary gland. I. The demonstration of the presence of two active principles. II. The separation of the two principles and their concentration in the form of potent solid preparations. J. Amer. Chem. Soc. 50: 573–601 (1928).CrossRefGoogle Scholar
  8. 8.
    A.H. Livermore, V. du Vigneuad, Preparation of high potency oxytocic material by the use of countercurrent distribution. J. Biol. Chem. 180: 365–373 (1949).PubMedGoogle Scholar
  9. 9.
    J.G. Pierce, S. Gordon, V. du Vigneaud, Further distribution studies on the oxytocic hormone of the posterior lobe of the pituitary gland and the preparation of an active crystalline flavianate. J. Biol. Chem. 199: 929–940 (1952).PubMedGoogle Scholar
  10. 10.
    F. Sanger, The free amino group in gramicidin S. Biochem. J. 40: 261–262 (1946).Google Scholar
  11. 11.
    P. Edman, Determination of the amino acid sequence in peptides. Arch. Biochem. 22: 475–476 (1949); also: Method for the determination of the amino acid sequence in peptides. Acta Chem. Scand. 4: 283-293 (1950); Stepwise degradation of peptides via phenylthiohydantoins. Acta Chem. Scand. 7: 700-701 (1953).PubMedGoogle Scholar
  12. 12.
    V. du Vigneaud, C. Ressler, S. Trippet, The sequence of amino acids in oxytocin with a proposal for the structure of oxytocin. J. Biol. Chem. 205: 949–957 (1953).Google Scholar
  13. 13.
    F. Sanger, The chemistry of insulin. Science 129:1340–1344 (1959).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Tuppy, Amino acid sequence in oxytocin. Biochim. Biophys. Acta 11:449–450 (1953); also H. Tuppy, H. Michl, Über die chemische Struktur des Oxytocins. Monatshefte der Chemie 84:1011-1020 (1953).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Gordon, V. du Vigneaud, Preparation of S,S′-dibenzyloxtocin and its reconversion to oxytocin. Proc. Soc. Exptl. Med. 84: 723–725 (1953).Google Scholar
  16. 16.
    V. du Vigneaud, L.F. Audrieth, H.S. Loring, The reduction of cystine in liquid ammonia by metallic sodium. J. Amer. Chem. Soc. 52:4500–4504 (1930).CrossRefGoogle Scholar
  17. 17.
    R.H. Sifferd, V. du Vigneaud, A new Synthesis of carnosine with some observations on the splitting of the benzyl group from carbobenzoxy derivatives and benzyl thioethers. J. Biol. Chem. 108: 753–761 (1935).Google Scholar
  18. 18.
    V. du Vigneaud, A trail of Research. Cornell University Press, Ithaca, New York (1952).Google Scholar
  19. 19.
    C.R. Harington, R.V. Pitt-Rivers, The synthesis of cysteine-(cystine-) tyrosine peptides and the action thereon of crystalline pepsin. Biochem. J. 38:417–428 (1944).PubMedGoogle Scholar
  20. 20.
    J.R. Vaughan, Jr., R.L. Osato, Preparation of peptides using mixed carboxylic acid anhydrides. J. Amer. Chem. Soc 73: 5553–5555 (1951).CrossRefGoogle Scholar
  21. 21.
    G.W. Anderson, J. Blodinger, A.D. Welcher, Tetraethyl pyrophosphite as reagent in peptide synthesis. J. Amer. Chem. Soc. 74: 5309–5312 (1952).CrossRefGoogle Scholar
  22. 22.
    V. du Vigneaud, C. Ressler, J.M. Swan, C.W. Roberts, P.G. Katsoyannis, S. Gordon, The synthesis of an octapeptide with the hormonal activity of oxytocin. J. Amer. chem. Soc. 75:4879–4880(1953).CrossRefGoogle Scholar
  23. 23.
    C. Ressler, V. du Vigneaud, The synthesis of the tetrapeptide amide S-benzyl-l-cysteinyl-l-prolyl-l-leucyl amide. J. Amer. Chem. Soc. 76: 3107–3109 (1954); J.M. Swan, V. du Vigneaud, The synthesis of l-glutaminyl-l-asparagine and l-isoglutamine from p-toluenesulfonyl-l-glutamic acid. ibid. 76: 3109-3113 (1954); P.G. Katsoyannis, V. du Vigneaud, The synthesis of p-toluenesulfonyl-l-isoleucyl-l-glutaminyl-l-asparagine and related peptides. ibid. 76: 3113-3115 (1954); V. du Vigneaud, C. Ressler, J.M. Swan, C.W. Roberts, P.G. Katsoyannis, The synthesis of oxytocin. ibid. 76: 3115-3121 (1954).CrossRefGoogle Scholar
  24. 24.
    V. du Vigneaud, A trail of sulfur research: from insulin to oxytocin. Les Prix Nobel en 1955. Stockholm 1956; cf. also Science 123: 967-974 (1956).Google Scholar
  25. 25.
    R.A. Boissonnas, S. Guttmann, P-A. Jaquenoud, J.P. Waller, Une nouvelle synthèse de l’oxytocine. Helv. Chim. Acta 38: 1491–1501 (1955).CrossRefGoogle Scholar
  26. 26.
    J. Rudinger, J. Honzl, M. Zaoral, Synthetic studies in the oxytocin field III. An alternative synthesis of oxytocin. Coll. Czechoslov. Chem. Commun. 21: 202–210 (1956).Google Scholar
  27. 27.
    Th. Curtius, Synthetische Versuche mit Hippurazid. Ber. dtsch. Chem. Ges. 35: 3226–3228 (1902).CrossRefGoogle Scholar
  28. 28.
    M. Bodanszky, V. du Vigneuad, An improved synthesis of oxytocin. J. Amer. Chem. Soc. 81:2504–2507(1959).CrossRefGoogle Scholar
  29. 29.
    M. Bodanszky, V. du Vigneaud, Synthesis of oxytocin by the nitrophenyl ester method. Nature (Lond.) 183:1324–1325 (1959); also A method of synthesis of long peptide chains using a synthesis of oxytocin as an example. J. Amer. Chem. Soc. 81: 5688-5691 (1959).CrossRefGoogle Scholar
  30. 30.
    M. Bodanszky, Stepwise synthesis of peptides by the nitro-phenyl ester method. Ann. N.Y. Acad. Sci. 88: 655–664 (1960).CrossRefGoogle Scholar
  31. 31.
    S. Sakakibara, Y. Shimonishi, A synthesis of oxytocin. Bull. Chem. Soc. Jpn. 38:120–123 (1965).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Manning, Synthesis by the Merrifield method of a protected nonapeptide amide with the amino acid sequence of oxytocin. J. Amer. Chem. Soc. 90: 1348–1349 (1968).CrossRefGoogle Scholar
  33. 33.
    M. Bodanszky, V. Du Vigneaud, Synthesis of a biologically active analog of oxytocin with phenylalanine replacing tyrosine. J. Amer. Chem. Soc. 81:1258–1259; 6072-6075 (1959).CrossRefGoogle Scholar
  34. 34.
    P.A. Jaquenoud, R.A. Boissonnas, Synthèse de la Phe2-oxytocine. Helv. Chim. Acta 42: 788–793 (1959).CrossRefGoogle Scholar
  35. 35.
    V. du Vigneaud, G. Winestock, V.V.S. Murti, D.B. Hope, R.D. Kimbrough Jr., Synthesis of β-mercaptopropionic acid oxytocin (desaminooxytocin), a highly potent analogue of oxytocin. J. Biol. Chem. 235: P.C. 64–66 (1960); also D.B. Hope, V.V.S. Murti, V. du Vigneaud, A highly potent analogue of oxytocin, desaminooxytocin. ibid. 237: 1563-1566 (1962).Google Scholar
  36. 36.
    D. Jarvis, V. du Vigneaud, Crystalline deamino-oxytocin. Science 143: 545–548 (1964).PubMedCrossRefGoogle Scholar
  37. 37.
    W.B. Lutz, C. Ressler, D.E. Nettleton Jr., V. du Vigneaud, Isoasparagine oxytocin: the isoasparagine isomer of oxytocin. J. Amer. Chem. Soc. 81: 167–173 (1959).CrossRefGoogle Scholar
  38. 38.
    C. Ressler, V. du Vigneaud, The isoglutamine isomer of oxytocin: its synthesis and comparison with oxytocin. J. Amer. Chem. Soc. 79:4511–4515 (1957).CrossRefGoogle Scholar
  39. 39.
    D. Jarvis, M. Bodanszky, V. du Vigneaud, The synthesis of 1-(hemihomocystine)-oxytocin and a study of some of its pharmacological properties. J. Amer. Chem. Soc. 83: 4780–4784 (1961).CrossRefGoogle Scholar
  40. 40.
    C. Ressler, The cyclic disulfide ring of oxytocin. Proc. Soc. Exptl. Biol. Med. 92: 725–730 (1956).Google Scholar
  41. 41.
    R.R. Sealock, V. du Vigneaud, Studies on the reduction of pitressin and pitocin with cysteine. J. Pharmacol. Exptl. Therapeutics 54: 433–447 (1935).Google Scholar
  42. 42.
    I.L. Schwartz, H. Rasmussen, L.M. Livingston, J. Marc-Aurele, Neurohypophyseal hormone-receptor interaction in Oxytocin, vasopressin and their structural analogs. Proc. 2nd intern, pharmacol. meeting. Prague, 1963 (Pergamon 1964) 10:125-133; H. Rasmussen, I.L. Schwartz, The interaction between neurohypophyseal hormones and the amphibian urinary bladder, ibid. 41-45.Google Scholar
  43. 43.
    J. Rudinger, K. Jost, A biologically active analogue of oxytocin not containing a disulfide group. Experientia 20:570–571 (1964); O. Keller, J. Rudinger, Synthesis of [1,6-α,α′-diaminosuberic acid] oxytocin (‘dicarbaoxytocin’). Helv. Chim. Acta 57: 1253-1259 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    F.H. White Jr., Reduction and reoxidation of disulfide bonds Methods of Enzymology 11 (C.H.W. Hirs Ed.) Academic, New York 1967, pp. 481–484.Google Scholar
  45. 45.
    D.W. Urry, M. Danishi, R. Walter, Secondary structure of the cyclic moiety of the peptide hormone oxytocin and its deamino analog. Proc. Natl. Acad. Sci. US 66: 111–116 (1970); also D.W. Urry, R. Walter, Proposed conformation of oxytocin in solution, ibid. 68: 956-958 (1971).CrossRefGoogle Scholar
  46. 46.
    S.P. Wood, I.J. Tickle, A.M. Treharne, J.E. Pitts, Y. Mascarenhas, J.Y. Li, J. Husain, S. Cooper, T.L. Blundell, V.J. Hruby, A. Buku, A.J. Fischman, H.R. Wyssbrod, Crystal structure of deamino-oxytocin. Conformational flexibility and receptor binding. Science 232: 633–636 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    V. du Vigneaud, G.S. Denning Jr., S. Drabarek, W.Y. Chan, The effect of replacement of the carboxamide group by hydrogen in glutamine or asparagine residues of oxytocin on its biological activity. J. Biol. Chem. 238: PC 1560–1561 (1963).Google Scholar
  48. 48.
    M. Wälti D. B. Hope Synthesis of [1-l-2-hydroxy-3-mercapto-propionic acid oxytocin. A highly potent analog of oxytocin. J.C.S. Perkin I 1946–1950 1972.CrossRefGoogle Scholar
  49. 49.
    V. du Vigneaud, P.S. Fitt, M. Bodanszky, M. O’Connell, Synthesis and some pharmacological properties of a peptide derivative of oxytocin: glycyl-oxytocin. Soc. Exptl. Biol. Med. 104: 653–656 (1960).Google Scholar
  50. 50.
    H.D. Law, V. du Vigneaud, Synthesis of 2-p-methoxyphenylalanine oxytocin (O-methyl-oxytocin) and some observations on its pharmacological behavior. J. Amer. Chem. Soc. 82: 4579–4581 (1960).CrossRefGoogle Scholar
  51. 51.
    H. Schulz and V. du Vigneaud, Synthesis of 1-l-penicillamine-oxytocin, 1-d-penicillamine-oxytocin and 1-deaminopenicillamine-oxytocm, potent inhibitors of the oxytocic response of oxytocin. J. Med. Chem. 9: 647–650 (1966).PubMedCrossRefGoogle Scholar
  52. 52.
    JJ. Nestor Jr., M.F. Ferger, V. du Vigneaud, [1-β-mercapto-β-β-pentamethylenepropionic acid] oxytocin, a potent inhibitor of oxytocin. J. Med. Chem. 18: 284–287 (1975).PubMedCrossRefGoogle Scholar
  53. 53.
    J. Lowbridge, M. Manning, J. Haldar, W.H. Sawyer, Synthesis and some pharmacological properties of [4-threonine-7-glycine] oxytocin, [1-(l-2-hydroxy-3-mercaptopropionic aeid)-4-threonine-7-glycine] oxytocin and [7-glycine] oxytocin, peptides with high oxytocic-antidiuretic selectivity. J. Med. Chem. 20:120–123 (1977).PubMedCrossRefGoogle Scholar
  54. 54.
    H.B. van Dyke, B.F. Chow, R.O. Greep, A. Rothen, Isolation of a protein from the pars neuralis of the ox pituitary with constant oxytocic, pressor and diuresis inhibiting activities. J. Pharmacol. Exper. Therap. 74: 190–209 (1942).Google Scholar
  55. 55.
    J.E. Stouffer, D.B. Hope, V. du Vigneaud, Neurophysin, oxytocin and desaminooxytocin. In perspectives in Biology (C.F. Cori, V.G. Foglia, L.F. Leloir, S. Ochoa eds.) Elsevier, Amsterdam 1962, pp. 75–80.Google Scholar
  56. 56.
    R. Acher, J. Chauvet, M.T. Chauvet, D. Crepy, Phylogeny of peptides of the neurohypophysis. Isolation of mesotocin (8-iso-leucine oxytocin) of the frog, intermediate between 4-serine-8-isoleucine oxytocin of the bony fish and mammalian oxytocin. Biochim. Biophys. Acta 90: 613–615 (1964).PubMedCrossRefGoogle Scholar
  57. 57.
    R. Acher, J. Chauvet, M.T. Chauvet, D.z Crepy, Isolation of a new neurohypophyseal hormone, isotocin, present in vertebrate fish. Biochim. Biophys. Acta 58: 624–625 (1962).PubMedCrossRefGoogle Scholar
  58. 58.
    R. Acher, J. Chauvet, M.T. Chauvet, D. Crepy, Phylogeny of neurohypophyseal peptides; isolation of a new hormone, glumitocin, (4-serine-8-glutamine oxytocin), present in cartilaginous fish, the ray (Raja clavata). Biochim. Biophys. Acta 107: 393–396 (1965).PubMedCrossRefGoogle Scholar
  59. 59.
    A.E. Wilhelmi, G.E. Pickford, W.H. Sayer, Initiation of the spawning reflex response in Fundulus by the administration of fish and mammalian neurohypophyseal preparations and synthetic oxytocin. Endocrinology 57: 243–252 (1955).PubMedCrossRefGoogle Scholar
  60. 60.
    J. Brodeurs, A. Beaulnes, Effets de l’oxytocine sur les arythmies digitaliques chez le chien. Rev. Can. Biol. 22: 275–279 (1963).Google Scholar
  61. 61.
    M. Bodanszky, S.L. Engel, Oxytocin and the life-span of male rats. Nature (Lond.) 210: 751 (1966).CrossRefGoogle Scholar
  62. 62.
    R.L. Katz, Antiarrhythmic action of synthetic oxytocin in man. Experientia 19:160–161 (1963).PubMedCrossRefGoogle Scholar
  63. 63.
    V. du Vigneaud, H.C. Lawler, E.A. Popenoe, Enzymatic cleavage of glycinamid from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the pituitary. J. Amer. Chem. Soc. 75:4880–4881 (1953).CrossRefGoogle Scholar
  64. 64.
    R. Acher, J. Chauvet, Structure of vasopressin. Biochim. Biophys. Acta 12: 487–488 (1953).PubMedCrossRefGoogle Scholar
  65. 65.
    V. du Vigneaud, D.T. Gish, P.G. Katsoyannis, A synthetic preparation possessing biological activities associated with arginine vasopressin. J. Amer. Chem. Soc. 76: 4751–4752 (1954); also V. du Vigneaud, D.T. Gish, P.G. Katsoyannis, G.P. Hess, Synthesis of the pressor-antidiuretic hormone arginine vasopressin. ibid. 80: 3355-3358 (1958).CrossRefGoogle Scholar
  66. 66.
    V. du Vigneaud, M.F. Bartlett, A. Jöhl, The synthesis of lysine vasopressin. J. Amer. Chem. Soc. 79: 5572–5575 (1957).CrossRefGoogle Scholar
  67. 67.
    J. Meienhofer, V. du Vigneaud, Preparation of lysine-vasopressin through a crystalline protected nanapeptide intermediate and purification of the hormone by chromatography. J. Amer. Chem. Soc. 82: 2279–2282 (1960).CrossRefGoogle Scholar
  68. 68.
    M. Bodanszky, J. Meienhofer, V. du Vigneaud, Synthesis of lysine-vasopressin by the nitrophenyl ester method. J. Amer. Chem. Soc. 82: 3195–3198 (1960).CrossRefGoogle Scholar
  69. 69.
    R.J. Huguenin, R.A. Boissonnas, Synthèses de la Phe2-argmine-vasopressine et de la Phe2-arginine vasotocine et nouvelles syntheses de l’arginine-vasopressine et de l’argininevasotocine. Helv. Chim. Acta 45: 1629–1643 (1962); also M. Bodanszky, M.A. Ondetti, C.A. Birkhimer, P.L. Thomas, Synthesis of arginine containing peptides through their ornithine containing analogs. Synthesis of arginine vasopressin, arginin vasotocin and l-histidyl-l-phenylalanyl-l-arginyl-l-tryptophyl-glyeme. J. Amer. Chem. Soc. 86: 4452-4449 (1964).CrossRefGoogle Scholar
  70. 70.
    J. Meienhofer, Y. Sano, A solid phase synthesis of [lysine]-vasopressin through crystalline protected intermediate. J. Amer. Chem. Soc. 90: 2996–2997 (1968).CrossRefGoogle Scholar
  71. 71.
    J. Meienhofer, A. Trzeciak, R.T. Havran, R. Walter, A solid phase synthesis of [8-arginine]-vasopressin through a crystalline nonapeptide intermediate and biological properties of the hormone. J. Amer. Chem. Soc. 92:7199–7202 (1970).CrossRefGoogle Scholar
  72. 72.
    D.A. Jones Jr., R.A. Mikulec, R.H. Mazur, A simple, high yield synthesis of arginine vasopressin. J. Org. Chem. 38: 2865–2869 (1973).PubMedCrossRefGoogle Scholar
  73. 73.
    M.L. Fink, M. Bodanszky, Synthesis and hormonal activities of 8-l-homonorleucine vasopressin. J. Med. Chem. 16:1324–1326 (1973).PubMedCrossRefGoogle Scholar
  74. 74.
    P. Dreyfuss, Synthesis and some pharmacological properties of 8-l-hydroxynorleucine vasopressin. J. Med. Chem. 17:252–255 (1974).PubMedCrossRefGoogle Scholar
  75. 75.
    M. Bodanszky, C.A. Birkhimer, 8-l-citrulline vasopressin and 8-l-citrulline oxytocin. J. Amer. Chem. Soc. 84: 4943–4948 (1962).CrossRefGoogle Scholar
  76. 76.
    R.L. Huguenin, R.A. Boissonnas. Synthèse de l’Orn8-vasopressine et de l’Orn8-oxytocine. Helv. Chim. Acta 46: 1669–1676 (1963).CrossRefGoogle Scholar
  77. 77.
    M. Bodanszky, G. Lindeberg, Synthesis and hormonal activities of 8-l-homolysine vasopressin. J. Med. Chem. 14:1197–1199 (1971).PubMedCrossRefGoogle Scholar
  78. 78.
    M. Manning, W.H. Sawyer, Development of selective agonists and antagonists of vasopressin and oxytocin. In Vasopressins (R.W. Schrier ed.) Raven, New York, 1985 pp. 131–144.Google Scholar
  79. 79.
    J.P.H. Burbach, G.L. Kovacs, D. de Wied, J.W. van Nispen, H.M. Greven, A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221:1310–1312 (1983).PubMedCrossRefGoogle Scholar
  80. 80.
    P.G. Katsoyannis, V. du Vigneuad, Arginine vasotocin, a synthetic analogue of the posterior pituitary hormones containing the ring of oxytocin and the side chain of vasopressin. J. Biol. Chem. 233:1352–1354 (1958); also Active principles of the neurophysis in cold-blooded vertebrates. Nature (Lond.) 184:1465 (1959); also R.D. Kimbrough and V. du Vigneaud, Lysine vasotocin, a synthetic analog of the posterior pituitary hormones, containing the ring of oxytocin and the side chain of lysine-vasopressin. J. Biol. Chem. 236: 778-780 (1961).PubMedGoogle Scholar
  81. 81.
    B.T. Pickering, H. Heller, Chromatographic and biological characteristics of fish and frog neurophysial extracts. Nature (Lond.) 184:1463–1464 (1959).CrossRefGoogle Scholar
  82. 82.
    W.H. Sawyer, R.A. Munsick, H.B. van Dyke, Pharmacological evidence for the presence of arginine vasotocin and oxytocin in neurohypophysial extracts from cold-blooded vertebrates. Nature (Lond.) 184:1464–1465 (1959).CrossRefGoogle Scholar
  83. 83.
    S. Pavel, I. Dimitru, I. Klepsh, M. Dorescu, Gonadotropin inhibiting principle in the pineal gland of human fetuses. Evidence for its identity with arginine vasotocin. Neuroendocrinology 1973 41-46.Google Scholar
  84. 84.
    L.C. Craig, D. Craig, Extraction and distribution; in Technique of Organic Chemistry vol. 3 (A. Weisberger ed.) Wiley, New York, 1950 p. 171–311.Google Scholar
  85. 85.
    R. Robinson, The interpretation of the reactions of pencillin and remarks on the constitution of penicillin in The Chemistry of Penicillin (H.T. Clarke, J.R. Johnson, Sir R. Robinson eds.) Princeton) University Press, Princeton, N.J. 1949 pp. 450–454.Google Scholar
  86. 86.
    V. du Vigneaud, F.H. Carpenter, R.W. Holley, A.H. Livermore, J.R. Rachele, Synthetic penicillin. Science 104: 431–433 (1946).CrossRefGoogle Scholar
  87. 87.
    D. Yamashiro, Partition chromatography of oxytocin on’ sephadex’ Nature (Lond.) 201: 76–77 (1964); also D. Yamashiro, D. Gillessen, V. du Vigneaud, Oxytocein and deamino-oxytocein. Biochemistry 5: 3711-3720 (1966).CrossRefGoogle Scholar
  88. 88.
    E. Brand, M. Sandberg, The lability of the sulfur in cystine derivatives and its possible bearing on the constitution of insulin. J. Biol. Chem. 70: 381–395 (1926).Google Scholar
  89. 89.
    H. Jensen, O. Wintersteiner, V. du Vigneaud, Studies on crystalline Insulin IV. The isolation of arginine, histidine and leucine. J. Pharmacol, exp. Ther. 32: 387–396 (1928).Google Scholar
  90. 90.
    V. du Vigneaud, H. Jensen, O. Wintersteiner, Studies on crystalline insulin III. Further observations on the crystallization of insulin and on the nature of the sulfur linkage. The isolation of cystine and tyrosine from hydrolyzed crystalline insulin. J. Pharmacol. Exp. Ther. 32: 367–385 (1928).Google Scholar
  91. 91.
    K. Freudenberg, W. Dirscher, H. Eyer, The chemistry of insulin. Hoppe-Seylers Z. physiol. Chem. 187: 89–117 (1930); also K. Freudenberg, T. Wegman, The sulfur of insulin, ibid. 233:159-171 (1935).CrossRefGoogle Scholar
  92. 92.
    V. du Vigneaud, The role which insulin has played in one concept of protein hormones and a consideration of certain phases of the chemistry of insulin. Cold Spring Harbor Symposia on Quantitative Biology VI. 275–285 (1938).Google Scholar
  93. 93.
    F. Sanger, E.O.P. Thompson, Amino acid sequence of the glycyl chain of insulin. I. Identification of lower peptides from partial hydrolysates. Biochem. J. 53: 353–366 (1953).PubMedGoogle Scholar
  94. 94.
    F. Sanger, H. Tuppy, Amino acid sequence in the phenylalanine chain of insulin. I. Identification of lower peptides from partial acid hydrolysates. Biochem. J. 49:463–481 (1951).PubMedGoogle Scholar
  95. 95.
    A.P. Ryle, F. Sanger, L.F. Smith, R. Kitai, Disulfide bonds in insulin. Biochem. J. 60: 541–556 (1955).PubMedGoogle Scholar
  96. 96.
    M.V. Adams, T.L. Blundell, E.J. Dodson, G.G. Dodson, M. Vijayan, E.N. Baker, M.M. Harding, D.C. Hodgkin, B. Rimmer, S. Sheaf, Structure of rhombohedral 2 zinc insulin cyrstals. Nature (Lond.) 224: 491–495 (1969).CrossRefGoogle Scholar
  97. 97.
    W. Kauzmann, Relative probabilities of isomers in cystine-containing randomly coiled polypeptides. In Sulfur in Proteins, Proc. of Symposium, Falmouth, Mass. 1958, p. 93-108 (1959).Google Scholar
  98. 98.
    G.H. Dixon, A.C. Wardlaw, Regeneration of insulin activity from the separated and inactive A and B chains. Nature (Lond.) 188: 721–724 (1960).CrossRefGoogle Scholar
  99. 99.
    Y.C. Du, R.Q. Jiang, C.L. Tsou, Conditions for successful resynthesis of insulin from its glycyl and phenylalanine chains. Sci. Sin. (Peking) 14: 229–236 (1965).Google Scholar
  100. 100.
    J. Meienhofer, E. Schnabel, H. Bremer, O. Brinkhoff, R. Zabel, W. Sroka, H. Klostermeyer, D. Brandenburg, T. Okuda, H. Zahn, Synthese der Insulinketten und ihre Kombination zu insulinaktiven Präparaten. Z. Naturforschung 18b: 1120–1121 (1963).Google Scholar
  101. 101.
    P.G. Katsoyannis, A. Tometsko, K. Fukuda, Insulin peptides IX. The synthesis of the A-chain of insulin and its combination with natural B-chain to generate insulin activity. J. Amer. Chem. Soc. 85: 2863–2865 (1963); also P.G. Katsoyannis, K. Fukuda, A. Tometsko, K. Suzuki, M. Tilak, Insulin peptides X. The synthesis of B-chain of insulin and its combination with natural or synthetic A-chain to generate insulin activity. ibid. 86: 930-932 (1964).CrossRefGoogle Scholar
  102. 102.
    Y-t. Kung, Y-C. Du, W-t. Huang, C-c. Chen, L-t. Ke, S-c. Hu, R-q. Jiang, S-q. Chu, C-i. Niu, J-z. Hsu, W-c. Chang, L-l. Cheng, H-s. Li, Y. Wang, T-p. Loh, A-h. Chi, C-h. Li, P-t. Shi, Y-h. Yich, K-l. Tang, C-y. Hsing, Total synthesis of crystalline bovine insulin, Sci. Sin. (Peking) 14:1710–1716 (1965).Google Scholar
  103. 103.
    A. Marglin, R.B. Merrifield, The synthesis of bovine insulin by the solid phase method. J. Amer. Chem. Soc. 88: 5051–5052 (1966).CrossRefGoogle Scholar
  104. 104.
    P. Sieber, B. Kamber, A. Hartmann, A. Jöhl, B. Riniker, W. Rittel, Totalsynthese von Humaninsulin unter gezielter Bildung der Disulfidbindungen. Helv. Chim. Acta 57: 2617–2621 (1974).PubMedCrossRefGoogle Scholar
  105. 105.
    G. Weitzel, U. Weber, J. Martin, K. Eisele, Structure and activity of insulin X. Participation of arginine B 22 in the action of insulin. Hoppe Seylers Z. physiol. Chem. 352:1005–1013 (1971).PubMedCrossRefGoogle Scholar
  106. 106.
    M. Bodanszky, J. Fried (to E.R. Squibb) Process for preparing human insulin. U.S. Patent 3276961 (1966).Google Scholar
  107. 107.
    K. Morihara, T. Oka, H. Tzuzuki, Semi-synthesis of human insulin by trypsin-catalyzed replacement of Ala-B 30 by Thr in porcine insulin. Nature (Lond.) 280: 412–413 (1979).CrossRefGoogle Scholar
  108. 108.
    D.F. Steiner, P.E. Oyer, The biosynthesis of insulin and a probable precursor of insulin by a human islet cell carcinoma. Proc. Nat. Acad. Sci. USA 57: 473–480 (1967).PubMedCrossRefGoogle Scholar
  109. 109.
    B.H. Frank, R.E. Chance, Two routes for producing human insulin utilizing recombinant DNA technology. München Med. Wschr. 125(Suppl. 1): 14–20 (1983).Google Scholar
  110. 110a.
    P.H. Bell, Purification and structure of β-corticotropin. J. Amer. Chem. Soc. 76: 5565–5567 (1954)CrossRefGoogle Scholar
  111. K.S. Howard, R.G. Shepperd, E.A. Eigner, D.S. Davies, P.H. Bell, Structure of β-corticotropin. Final sequence studies, J. Amer. Chem. Soc. 77: 3419–3420 (1955)CrossRefGoogle Scholar
  112. B. Riniker, P. Sieber, W. Rittel, H. Zuber, Revised amino acid sequence for porcine and human adrenocorticotropic hormone. Nature (Lond.) New Biol. 235: 114–115 (1972).Google Scholar
  113. 110b.
    K. Hofmann, H. Yajima, N. Yanaihara, T.Y. Liu, S. Lande, The synthesis of a tricosapeptide possessing essentially the full biological activity of natural adrenocorticotropin (ACTH). J. Amer. Chem. Soc. 83: 487–489 (1967)CrossRefGoogle Scholar
  114. 111.
    R. Schwyzer, P. Sieber, Total synthesis of adrenocorticotrophic hormone, Nature (Lond.) 199:172–174 (1963);P. Sieber, W. Rittel, B. Riniker, Die Synthese von menschlichem adrenocorticotropem Hormon (αh-ACTH) mit revidierter Aminosauresequenz. Helv. Chim. Acta 55: 1243-1248 (1972).CrossRefGoogle Scholar
  115. 112.
    S. Bajusz, Z. Paulay, Z. Lang, K. Medzihradszky, L. Kisfaludy, M. Löw, Synthesis and biological properties of human corticotropin and its fragments. Acta Chim. Acad. Sci. Hung. 52: 335–348 (1967).Google Scholar
  116. 113.
    P.W. Schiller, Study of adrenocorticotropic hormone conformation by evaluation of intramolecular resonance energy transfer in N-dansyllysine21-ACTH (1-24) tetrakosipeptide. Proc. Nat. Acad. Sci. USA 69: 975–979 (1972).PubMedCrossRefGoogle Scholar
  117. 114.
    P.W. Schiller, The use of steady-state fluorescence techniques in the conformational analysis of polypeptides; in Perspectives in Peptide chemistry (A. Eberle, R. Geiger, Th. Wieland eds.) S. Karger, Basel 1981, pp. 236–248.Google Scholar
  118. 115.
    V. Mutt, J.E. Jorpes, Hormonal polypeptides of the upper intestine. Biochem. J. 125: 57P–58P (1971).PubMedGoogle Scholar
  119. 116.
    M. Bodanszky, J.C. Tolle, J.D. Gardner, M.D. Walker, V. Mutt, Cholecystokinin (Pancreozy-min) 6. Synthesis and properties of the N-acetyl derivative of cholecystokinin 27-33. Int. J. Pept. Prot. Res. 16:402–411 (1980).CrossRefGoogle Scholar
  120. 117.
    A. Anastasi, V. Erspamer, R. Endean, Isolation and structure of caerulein, an active decapeptide from the skin of Hyla Caerulea. Experientia 23: 699–700 (1967).PubMedCrossRefGoogle Scholar
  121. 118.
    L. Bernardi, G. Bosisio, R. de Castiglione, O. Goffredo, Synthesis of Caerulein, Experientia 23:700–702(1967).PubMedCrossRefGoogle Scholar
  122. 119.
    M.A. Ondetti, J. Pluscec, E.F. Sabo, J.T. Sheehan, N. Williams, Synthesis of cholecystokininpancreozymin I. The C-terminal dodecapeptide. J. Amer. Chem. Soc. 92: 195–199 (1970).CrossRefGoogle Scholar
  123. 120.
    Y. Kurano, T. Kimura, S. Sakakibara, Total synthesis of porcine cholecystokinin-33 (CCK-33). J. Chem. Soc. Chem. Comm. 1987, 323-325.Google Scholar
  124. 121.
    G.J. Dockray, Immunological evidence of cholecystokinin-like peptides in the brain. Nature (Lond.) 264: 568–570 (1976).CrossRefGoogle Scholar
  125. 122.
    V. Mutt, J.E. Jorpes, S. Magnusson, Structure of porcine secretin. The amino acid sequence. Eur. J. Biochem. 15: 513–519 (1970).PubMedCrossRefGoogle Scholar
  126. 123.
    M. Bodanszky, M.A. Ondetti, S. Levine, V.L. Narayanan, M. von Saltza, J.T. Sheehan, N.J. Williams, E.F. Sabo, Synthesis of a heptacosapeptide amide with the hormonal activity of secretin. Chemistry & Industry 42:1757–1758 (1966).Google Scholar
  127. M. Bodanszky, N.J. Williams, Synthesis of secretin. I. The protected tetradecapeptide corresponding to sequence 14‱27. J. Amer. Chem. Soc. 89: 685–689 (1967)CrossRefGoogle Scholar
  128. M. Bodanszky, M.A. Ondetti, S.D. Levine, N.J. Williams, Synthesis of secretin. II. The stepwise approach. J. Amer. Chem. Soc. 89: 6753–6757 (1967)CrossRefGoogle Scholar
  129. M.A. Ondetti, V.L. Narayanan, M. von Salza, J.T. Sheehan, E.F. Sabo, M. Bodanszky, The synthesis of secretin III. The fragment condensation approach, J. Amer. Chem. Soc. 90: 4711–4716 (1968).CrossRefGoogle Scholar
  130. 124.
    W.W. Bromer, L.G. Sinn, O.K. Behrens, The amino acid sequence of glucagon. V. Location of the amide groups, degradation studies and summary of sequential evidence. J. Amer. Chem. Soc. 79: 2807–2810 (1957).CrossRefGoogle Scholar
  131. 125.
    E. Wünsch, Die totale Synthese des Pankreas-Hormons Glukagon. Z. Naturforschung (B) 22: 1269–1276 (1967).Google Scholar
  132. 126.
    S.I. Said, V. Mutt, Polypeptide with broad biological activity: isolation from the small intestine. Science 169: 1217–1218 (1970).PubMedCrossRefGoogle Scholar
  133. 127.
    J.C. Brown, J.R. Dryburgh, A gastric inhibitory polypeptide II. The complete amino acid sequence. Can. J. Biochem. 49: 867–872 (1971); H. Jornvall, M. Carlquist, S. Kwank, S.C. Otte, C.H.S. Mclntosh, J.C. Brown, V. Mutt, Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett. 123: 205-210 (1981).PubMedGoogle Scholar
  134. 128.
    K. Tatemoto, V. Mutt, Isolation and characterization of the intestinal porcine PHI (PHI-27), a new member of the glucagon-secretin family. Proc. Natl. Acad. Sci. USA 78: 6603–6607 (1981).PubMedCrossRefGoogle Scholar
  135. 129.
    K. Tatemoto, V. Mutt, Chemical determination of polypeptide hormones. Proc. Natl. Acad. Sci. USA 75, 4115–4119 (1978).PubMedCrossRefGoogle Scholar
  136. 130.
    N. Itoh, K. Obata, N. Yanaihara, H. Okamoto, Human pre-provasoactive polypeptide contains novel PHI-27-like peptide, PHM-27. Nature 304: 547–549 (1983).Google Scholar
  137. 131.
    J.C. Brown, M.A. Cook, J.R. Dryburgh, Motilin, a gastric motor-activity stimulating polypeptide: the complete amino acid sequence. Can. J. Biochem. 51: 533–537 (1973).PubMedCrossRefGoogle Scholar
  138. 132.
    J.C. Brown, M.A. Cook, J.R. Dryburgh, Motilin, a gastric motor-activity stimulating polypeptide: final purification, amino acid composition and C-terminal residues. Gastroente-rology 62:401–404 (1972).Google Scholar
  139. 133.
    K. Tatemoto, A. Rökaens, H. Jörnvall, T.J. Mc Donald, V. Mutt, Galanin, a novel biologically active peptide from porcine intestines. FEBS Letters 164: 124–128 (1983); H. Yajima, S. Futaki, N. Fujii, K. Akaji, S. Funakoshi, M. Sakurai, S. Katakura, K. Inoue, R. Hosotani, T. Tobe, T. Segawa, A. Inoue, K. Tatemoto, V. Mutt, Synthesis of galanine, a new gastrointestinal Polypeptide. J. Chem. Soc. Chem. Commun. 1985, 877-878..PubMedCrossRefGoogle Scholar
  140. 134.
    H.J. Keutmann, M.M. Sauer, G.N. Hendy, J.L.H. O’Riordan, J. Potts, Complete amino acid sequence of human parathyroid hormone. Biochemistry 17: 5723–5729 (1978).PubMedCrossRefGoogle Scholar
  141. 135.
    G.N. Hendy, H.M. Kronenberg, J.T. Potts, A. Rich, Nucleotide sequence of cloned cDNA-s encoding human preparatyroid hormone. Proc. Natl. Acad. Sci. USA 78: 7365–7369 (1981).PubMedCrossRefGoogle Scholar
  142. 136.
    T. Kimura, T. Morikawa, M. Takai, S. Sakakibara, Total synthesis of human parathyroid hormone (1–84). J. Chem. Soc. Chem. Commun. 1982, 340-341.Google Scholar
  143. 137.
    H. Yajima, N. Fujii, Chemical synthesis of ribonuclease A with full enzymatic activity; in Chemical Synthesis and Sequencing of Peptides and Proteins (t-Y. Liu, A.N. Schechter, R.L. Heinrikson, P.G. Condliffe eds.) Elseview/North Holland, New York, 1981 p. 21–39.Google Scholar
  144. 138.
    D.H. Copp, E.C. Cameron, B. Cheney, G.F. Davidson, K.G. Henze, Evidence for calcitonin, a new hormone from the parathyroid that lowers blood calcium. Endocrinology 70, 638–649 (1962).PubMedCrossRefGoogle Scholar
  145. 139.
    B. Riniker, R. Neher, R. Maier, F.W.Z Kahnt, P.G.H. Byfield, L. Galante, I. MacIntyre, T.V. Gudmundsson, Menschliches Calcitonin I. Isolierung und Charakterisierung. Helv. Chim. Acta 51, 1738–1742 (1968).PubMedCrossRefGoogle Scholar
  146. 140.
    R. Neher, B. Riniker, W. Rittel, H. Zuber, Menschliches Calcitonin II. Studien von Calcitonin M und D. Helv. Chim. Acta 51:1900–1905 (1968).PubMedCrossRefGoogle Scholar
  147. 141.
    P. Sieber, M. Brugger, B. Kamber, B. Riniker, W. Rittel, Menschliches Calcitonin IV. Die Synthese von Calcitonin M. Helv. Chim. Acta 51: 2057–2061 (1968).PubMedCrossRefGoogle Scholar
  148. 142.
    B. Kamber, W. Rittel, Eine neue, einfache Methode zur Synthese von Cystinpeptiden. Helv. Chim. Acta 51: 2061–2064 (1968).PubMedCrossRefGoogle Scholar
  149. 143.
    P. Brazeau, W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier, R. Guillemin, Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79 (1973).PubMedCrossRefGoogle Scholar
  150. 144.
    R. Burgus, N. Ling, M. Butcher, R. Guillemin, Primary structure of somatostatin, a hypothalamic peptide that inhibits the secretion of pituitary growth hormone. Proc. Natl. Acad. Sci. USA 70: 684–688 (1973).PubMedCrossRefGoogle Scholar
  151. 145.
    A.V. Schally, W.Y. Huang, R.C.C Chang, A. Akimura, T.W. Redding, R.P. Millar, M.W. Hunkapiller, L.E. Hood, Isolation and structure of pro-somatostatin: putative precursor from pig hypothalamus. Proc. Natl. Acad. Sci. USA 77: 4489–4493 (1980).PubMedCrossRefGoogle Scholar
  152. 146.
    D. Yamashiro, C.H. Li, Synthesis of a peptide with full somatostatin activity. Biochem. Biophys. Res. Comm. 1973, 882-888.Google Scholar
  153. 147.
    D.H. Coy, E. Coy, A. Arimura, A.V. Schally, Solid phase synthesis of growth hormone-release inhibitory factor. Biochem. Biophys. Res. Comm. 1973, 1267-1273.Google Scholar
  154. 148.
    D. Sarantakis, W.A. Mc Kinley, Total synthesis of hypothalamic somatostatin. Biochim. Biophys. Res. Comm. 1973, 234-238.Google Scholar
  155. 149.
    J.E.F. Rivier, Somatostatin. Total solid phase synthesis. J. Amer. Chem. Soc. 96: 2986–2992 (1974).CrossRefGoogle Scholar
  156. 150.
    D.F. Veber, Conformational considerations in the design of somatostatin analogs showing increased metabolic stability. Proc. of the Sixth Amer. Peptide Symp. (Pierce Chem. Co., Rockford, Ill) 1979, pp. 409–419.Google Scholar
  157. 151.
    D.F. Veber, R.M. Freidinger, D.S. Perlow, W.J. Paleveda Jr., F.W. Holly, R.F. Strachan, R.F. Nutt, G.H. Arison, C. Homnick, W.C. Randall, M.S. Glitzer, R. Saperstein, R. Hirschmann, A potent cyclic hexapeptide analogue of somatostatin. Nature 292: 55–58 (1981).PubMedCrossRefGoogle Scholar
  158. 152.
    W. Bauer, U. Briner, W. Doepfner, H. Haller, R. Huguenin, P. Marbach, T.J. Petcher, J. Pless, A very potent and selective analogue of somatostatin with prolonged action. Life Sci. 31:1133–1140 (1982).PubMedCrossRefGoogle Scholar
  159. 153.
    L. Pradayrol, J.A. Chayvialle, M. Carlquist, V. Mutt, Isolation of a porcine intestinal peptide with C-terminal somatostatin. Biochem. Biophys. Res. Comm. 85: 701–708 (1978).PubMedCrossRefGoogle Scholar
  160. 154.
    L. Moroder, M. Gemeiner, W. Göring, E. Jaeger, J. Musiol, R. Scharf, H. Stocker, E. Wünsch, L. Pradayrol, N. Vaisse, A. Ribet, Totalsynthese von somatostatin-28. Hoppe Seylers Z. Physiol. Chem. 362: 697–716 (1981).CrossRefGoogle Scholar
  161. 155.
    R. Burgus, Isolation and structural elucidation of ovine hypothalamic thyrotropin (TSH) releasing factor (TRF). Proc. of the Second Amer. Peptide Symp. (Gordon and Breach, New York) 1972, pp. 287–294.Google Scholar
  162. 156.
    D.M. Desiderio, The elucidation of primary structure of oligopeptides of biological importance via mass spectrometry. Proc. of the Second Amer. Peptide Symp. (Gordon and Breach, New York) 1972, pp. 159–168.Google Scholar
  163. 157.
    D. Gillessen, A.M. Felix, W. Lergier, R.D. Studer, Synthese des “tyrotropin-releasing” Hormons (TRH) (Schaf) und verwandter Peptide. Helv. Chim. Acta 53: 63–72 (1970).PubMedCrossRefGoogle Scholar
  164. 158.
    S. Bajusz, I. Fauszt, Improved method for the synthesis of the thyrotropin releasing hormone TRH. Acta Chim. Acad. Sci. Hung 75: 419–422 (1973).Google Scholar
  165. 159.
    J. Rivier, Total synthesis of the hypothalamic thyrotropin releasing factor. Methods Enzymol. 37(Pt.B): 408–415 (1975).PubMedCrossRefGoogle Scholar
  166. 160.
    R. Burgus, M. Butcher, M. Amoss, N. Ling, M. Monahan, J. River, P. Fellows, R. Blackwell, W. Vale, R. Guillemin, Primary structure of the ovine hypothalamic luteinizing hormone releasing factor (LRF) Proc. Natl. Acad. Sci. USA 69: 278–282 (1972).PubMedCrossRefGoogle Scholar
  167. 161.
    A.V. Schally, Aspects of hypothalamic regulation of the pituitary gland (Nobel Lecture) Science 202:18–28 (1978).PubMedCrossRefGoogle Scholar
  168. 162.
    R. Guillemin, Peptides in the brain: the new endocrinology of the neuron. (Nobel Lecture) Science 202: 390–402 (1978).PubMedCrossRefGoogle Scholar
  169. 163.
    R. Guillemin, P. Brazeau, P. Böhlen, F. Esch, N. Ling, W.B. Wehrenberg, Growth hormonereleasing factor from a human pancreatic tumor that causes acromegaly. Science 218: 585–587 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Spinger-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Theodor Wieland
    • 1
  • Miklos Bodanszky
    • 2
  1. 1.Max-Planck-Institut für Medizinische ForschungHeidelbergGermany
  2. 2.PrincetonUSA

Personalised recommendations