A Second Breakthrough: New Methods for the Formation of the Peptide Bond

  • Theodor Wieland
  • Miklos Bodanszky


To some extent it is surprising that in the first half of this century so little attention was paid to methods of coupling. A reasonable explanation for this neglect and delay could be the effectiveness of the acid azides of Curtius and the acid chlorides of E. Fischer in the formation of the peptide bond. Most of the desired bonds could be secured without fail and for a long period the principal obstacle in the development of peptide synthesis remained the lack of suitable, readily removable blocking groups. When this barrier was finally removed in the 1930s (cf. Chap. 3) the incentive needed for intensive research toward improved coupling methods was still missing. The elucidation of the structure of excitingly interesting peptides, such as insulin, oxytocin or angiotensin, all within a few years in the early 1950s, provided the necessary stimulus for studies in the methodology of synthesis. Yet, even before these tangible objectives became apparent a certain inspiration was offered by the explosive growth of knowledge in biochemistry at about the same time. The reactive intermediates recognized in biological processes involving acylation revealed a degree of sophistication not seen in the methods generally used in the organic laboratory. Hence biomimetic procedures became both attractive and challenging.


Peptide Synthesis Active Ester Coupling Reagent Mixed Anhydride Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Chantrenne, Hippuric acid formation from glycine and dibenzoyl phosphate. Nature, 160, 603–604 (1947); Un modèle de synthèse peptidique. Propriétés due benzoylphosphate de phenyl. Biochim. Biophys. Acta 2: 286-293 (1948); A new method of peptide synthesis. Nature 164: 576-577 (1949); Peptide synthesis via glycyl phosphate. Biochim. Biophys. Acta 4: 482-492 (1950).PubMedCrossRefGoogle Scholar
  2. 2.
    J.C. Sheehan, V.S. Frank, Peptide synthesis using energy-rich phosphorylated amino acid derivatives. J. Amer. Chem. Soc. 72: 1312–1316 (1950).CrossRefGoogle Scholar
  3. 3.
    F. Lynen, E. Reichert, Zur chemischen Struktur der “activierten Essigsäure”. Angew. Chem. 63: 47–48 (1951); F. Lynen, ibid. 63: 490 (1951).CrossRefGoogle Scholar
  4. 4.
    Th. Wieland, W. Schäfer, E. Bokelmann, Über Peptidsynthesen V. Über eine bequeme Darstellungsweise von Acylthiophenolen und ihre Verwendung zu Amid-und Peptid-Synthesen. Liebigs Ann. Chem. 573: 99–104 (1951).CrossRefGoogle Scholar
  5. 5.
    Th. Wieland, Sulfur in biomimetic peptide synthesis. In: Roots of Biochemistry, Fritz Lipmann-Meeting, Berlin 1987; H. Kleinkauf, H.v. Döhren, L. Jaenicke eds. De Gruyter Berlin, New York 1988, p. 213-223.Google Scholar
  6. 6.
    Th. Wieland, W. Kern, R. Sehring, Über Anhydride von acylierten Aminosäuren. Liebigs Ann. Chem. 569: 117–122 (1950); Th. Wieland, R. Sehring, Eine neue Peptid-Synthese. ibid. 569:122-129 (1950).CrossRefGoogle Scholar
  7. 7.
    K. Kraut, Fr. Hartmann, Über das Glycin. Liebigs Ann. Chem. 133: 99–108 (1865).CrossRefGoogle Scholar
  8. 8.
    Th. Wieland, H. Bernhard, Über Peptid-Synthesen. 3. Mitteilung. Die Verwendung von Anhydriden aus N-acylierten Aminosäuren und Derivaten anorganischer Säuren. Liebigs Ann. Chem. 572:190–194 (1951).CrossRefGoogle Scholar
  9. 9.
    R.A. Boissonnas, Une nouvelle methode de synthèse peptidique. Helv. Chim. Acta 34: 874–879 (1951).CrossRefGoogle Scholar
  10. 10.
    J.R. Vaughan Jr., R.L. Osato. The preparation of peptides using mixed carbonic-carboxylic acid anhydrides. J. Amer. Chem. Soc. 74: 676–678 (1952).CrossRefGoogle Scholar
  11. 11.
    J. Meienhofer, The mixed carbonic anhydride method. In the Peptides, Vol.1 (E. Gross, J. Meienhofer, eds.) Academic Press, New York 1979, pp. 241–314.Google Scholar
  12. 12.
    G.W. Kenner, Synthesis of peptides. Chem. Ind. 1951,15; G.W. Kenner, R.J. Stedman. Peptides. Part I. The synthesis of peptides through anhydrides of sulfuric acid. J. Chem. Soc. 1952, 2067-2076.Google Scholar
  13. 13.
    G.W. Anderson, A.D. Welcher, R.W. Young, Diethyl chlorophosphite as reagent for peptide synthesis. J. Amer. Chem. Soc. 73: 501–502 (1951).CrossRefGoogle Scholar
  14. 14.
    A.R. Emery, V. Gold, Quantitative studies of the reactivities of mixed carboxylic anhydrides. Part. I. The composition of the acylation products in the reaction between acetic chloroacetic anhydrides and primary aromatic amines. J. Chem. Soc. 1950:1443-1447.Google Scholar
  15. 15.
    J.R. Vaughan Jr, R.L. Osato, Preparation of peptides using mixed carboxylic acid anhydrides. J. Am. Chem. Soc. 73: 5553–5555 (1951).CrossRefGoogle Scholar
  16. 16.
    M. Zaoral, Amino acids and peptides XXXVI. Pivaloyl chloride as a reagent in the mixed anhydride synthesis of peptides. Coll. Czechoslov. Chem. Comm. 27: 1273–1277 (1962).Google Scholar
  17. 17.
    N.F. Albertson, Synthesis of peptides with mixed anhydrides. Org. Reactions 12: 157–355 (1962).Google Scholar
  18. 18.
    E. Pacsu, E.J. Wilson Jr., Poly condensation of certain peptide esters I. Poly glycine esters. J. Org. Chem. 7:117–125(1942).CrossRefGoogle Scholar
  19. 19.
    H. Brockmann, H. Musso, Versuche zur Synthese von Polypeptiden durch Kondensation von Aminosäure-und Peptidestern Chem. Ber. 87: 581–592 (1954).CrossRefGoogle Scholar
  20. 20.
    R. Schwyzer, B. Iselin, M. Feurer, 8. Über aktivierte Ester der Hippursäure und ihre Umsetzungen mit Benzylamin. Helv. Chim. Acta 38: 69–79 (1955); R. Schwyzer, M. Feurer, B. Iselin, H. Kägi, 9. Über aktivierte Ester II. Synthese aktivierter Ester von Aminosäure Derivaten, ibid. 38: 80-83 (1955); R. Schwyzer, M. Feurer, B. Iselin, 10 Über aktivierte Ester III. Umsetzungen activierter Ester von Aminosäure-und Peptid-Derivaten mit Aminen und Aminosäureestern. Helv. Chim. Acta. 38: 83-89 (1955).CrossRefGoogle Scholar
  21. 21.
    M. Bodanszky, Synthesis of peptides by aminolysis of nitrophenyl esters, Nature 175: 685–686 (1955).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Gordon, J.G. Miller, A.R. Day, Effect of structure on reactivity in ammonolysis of esters with special references to electron release effects of alkyl and aryl groups. J. Amer. Chem. Soc. 70:1946–1953 (1948).CrossRefGoogle Scholar
  23. 23.
    J.A. Farrington, G.W. Kenner, J.M. Turner, Preparation of p-nitrophenyl thiolesters and their application to peptide synthesis. Chem. Ind. (London) 1955, 601–602; J.A. Farrington, P.J. Hextall, G.W. Kenner, J.M. Turner, Peptides. Part VII. The preparation and use of p-nitrophenyl thiolesters. J. Chem. Soc. 1957, 1407-1413.Google Scholar
  24. 24.
    M. Bodanszky, Active esters in peptide synthesis in The Peptides, Vol. I. (E. Gross, J. Meinhofer, eds.) Academic Press, New York 1979, pp. 105–196.Google Scholar
  25. 25.
    J. Pless, R.A. Boissonnas, Über die Geschwindigkeit der Aminolyse von verschiedenen aktivierten, N-geschützten α-Aminosäure-p-nitrophenylestern, insbesondere 2,4,5-trichlorphenylestern. Helv. Chim. Acta. 46: 1609–1625 (1963).CrossRefGoogle Scholar
  26. 26.
    J. Kovács, L. Kisfaludy, M.Q. Ceprini, On the optical purity of peptide active esters prepared by N,N′-dicyclohexylcarbodiimide and “complexes” of N,N′-dicyclohexylcarbodiimide-penta-chlorophenol and N,N′-dicyclohexylcarbodiimide and pentafluorophenol. J. Amer. Chem. Soc. 89:183–184(1967).CrossRefGoogle Scholar
  27. 27.
    G.H.L. Nefkens, G.I. Tesser, A Novel activated ester in peptide synthesis. J. Amer. Chem. Soc. 83:1263 (1961).CrossRefGoogle Scholar
  28. 28.
    G.W. Anderson, J.E. Zimmerman, N-Hydroxysuccinimide esters in peptide synthesis. J. Amer. Chem. Soc. 86:1839–1842 (1964).CrossRefGoogle Scholar
  29. 29.
    S.M. Beaumont, B.O. Handford, G.T. Young, The use of esters of NN-dialkylhydroxylamines in peptide synthesis and as selective acylating agents, J. Chem. Soc. Chem. Commun. 1965, 53-54; B.O. Handford, J.H. Jones, G.T. Young, T.F.N. Johnson, The use of esters of 1-hydroxypiperidine and other NN-dialkylhydroxylamines in peptide synthesis and as selective acylating agents. J. Chem. Soc. 1965, 6814-6827.Google Scholar
  30. 30.
    H.D. Jakubke, A. Baumert, Vergleichende Studien über den Peptidknüpfungsschritt unter Verwendung verschiedener aktivierter Ester am Beispiel eines Modellpeptids. J. Prakt. Chem. 316: 241–248 (1974).CrossRefGoogle Scholar
  31. 31.
    K. Lloyd, G.T. Young, The use of acylamino acid-esters of 2-mercaptopyridine in peptide synthesis. J. Chem. Soc. Chem. Commun. 1968, 1400-1401; Amino acids and peptides. Part XXXIV. Anchimerically assisted coupling reactions: the use of 2-pyridyl thiol esters. J. Chem. Soc. 1971, 2890-2896; A.S. Dutta, J.S. Morley, Polypeptides. Part XII. The preparation of 2-pyridyl esters and their use in peptide synthesis. J. Chem. Soc. C. 1971, 2896-2900.Google Scholar
  32. 32.
    W. König, R. Geiger, Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxybenzotriazolen. Chem. Ber. 103: 788–798 (1970).PubMedCrossRefGoogle Scholar
  33. 33.
    D.F. Elliott, D.W. Russel, Peptide synthesis employing p-nitrophenyl esters prepared with the aid of N,N′-dieyclohexylcarbodiimide. Biochem. J. 66:49 P. (1957); M. Rothe, F.W. Kunitz, Synthese cyclischer Oligopeptide der α-Aminocapronsäure. Konstitutionsaufklärung der ring-förmigen Bestandteile von Polycaprolaktam. Liebigs Ann. Chem. 609: 88-102 (1957).Google Scholar
  34. 34.
    M. Fridkin, Polymeric reagents in peptide synthesis in The Peptides vol. 2 (E. Gross, J. Meienhofer eds.) Academic Press New York 1980, pp. 333–363.Google Scholar
  35. 35.
    Th. Wieland, G. Schneider, N-Acylimidazole als energiereiche Acylverbindungen. Liebigs Ann. Chem. 580:159–168 (1953); R.H. Mazur, Acceleration of p-nitrophenyl ester peptide synthesis by imidazole. J. Org. Chem. 28: 2498 (1963).CrossRefGoogle Scholar
  36. 36.
    H.C. Beyermann, W. Maassen van den Brink, Use of bifunctional catalysts in peptide and other syntheses. Proc. Chem. Soc. (Lond) 1963, 266;.Google Scholar
  37. H.C. Beyermann, W. Maasen van den Brink, F. Weygand, A. Prox, W. König, L. Schmidhammer, E. Nintz, Racemization and bifunctional catalysts in peptide synthesis. Rec. Trav. Chim. Pays. Bas. 84: 213–231 (1965)CrossRefGoogle Scholar
  38. 37.
    W. König, R. Geiger, Racemisierung bei Peptidsynthesen, Chem. Ber. 103: 788–798; 2024-2034 (1970).PubMedCrossRefGoogle Scholar
  39. 38.
    W. König, R. Geiger, N-Hydroxyverbindungen als Katalysatoren für die Aminolyse aktivierter Ester Chem. Ber. 106: 3626–3635 (1973).CrossRefGoogle Scholar
  40. 39.
    J.F. Arens, The chemistry of acetylenic ethers XIII. Acetylenic ethers as reagents for the preparation of amides. Rev. Trav. Chim. Pays. Bas. 74: 769–770 (1955).CrossRefGoogle Scholar
  41. 40.
    J.C. Sheehan, G.P. Hess, A new method of forming peptide bonds. J. Amer. Chem. Soc. 77:1067–1068 (1955).CrossRefGoogle Scholar
  42. 41.
    H.G. Khorana, Peptides. Part III. Selective degradation for the carboxyl end. The use of carbodiimides. J. Chem. Soc. 1952, 2081-2088; The chemistry of carbodiimides. Chem. Reviews 53:145-166 (1953).Google Scholar
  43. 42.
    H.G. Khorana, The use of dicyclohexylcarbodiimide in the synthesis of peptides. Chem. Ind. (London) 1955, 1087-1088.Google Scholar
  44. 43.
    R.B. Woodward, R.A. Olofson, The reaction of isoxazolium salts with bases. J. Amer. Chem. Soc. 83:1007–1009 (1961); R.B. Woodward, R.A. Olofson, H. Mayer, A. new synthesis of peptides, J. Amer. Chem. Soc. 83:1010-1012 (1961).CrossRefGoogle Scholar
  45. 44.
    L. Claisen, Über α-Methyl-isoxazol. Ber. Dtsch. Chem. Ges. 42: 59–68 (1909); O. Mumm, G. Münchenmeyer, Überführung des Oxymethylenacetophenons in Benzoylbrenztraubensäure und einige neue Derivate. Ber. Dtsch. Chem. Ges. 43: 3335-3345 (1910).Google Scholar
  46. 45.
    H.A. Staab, Reaktionsfahige heterocyclische Diamide der Kohlensäure. Liebigs Ann. Chem. 609: 75–83 (1957).CrossRefGoogle Scholar
  47. 46.
    B. Belleau, G. Malek, A new convenient reagent for peptide synthesis. J. Amer. Chem. Soc. 90: 1651–1652 (1968).CrossRefGoogle Scholar
  48. 47.
    A.J. Bates, I.J. Galpin, A. Hallett, D. Hudson, G.W. Kenner, G.W. Ramage, R.C. Sheppard, A new reagent for peptide synthesis: &#03BC;-oxo-bis-[tris-(dimethylamino)phosphonium]-bistetrafluoroborate. Helv. Chim. Acta. 58: 688–696 (1975).PubMedCrossRefGoogle Scholar
  49. 48.
    B. Castro, J.R. Dormoy, G. Evin, C. Selve, Reactifs de couplage peptidique IV. (1)-L-hexafluorophosphate de berizotriazolyl-N-oxitris-dimethylamino phosphonium (B.O.P). Tetrahedron Letters 1975, 1219-1222.Google Scholar
  50. 49.
    W. König, R. Geiger, Eine neue Methode zur Synthese von Peptiden. Aktivierung der Carboxyl Gruppe mit Dicyclohexylcarbodiimid und 3-Hydroxy-4-oxo-3.4-dihydro-1.2.3-benzotriazin. Chem. Ber. 103: 2034–2040 (1970).PubMedCrossRefGoogle Scholar
  51. 50.
    M. Bodanszky, J. Martinez, Side reactions in peptide synthesis. The Peptides, vol. 5 (E. Gross, J. Meienhofer, eds.) Acad. Press, New York 1983 pp. 111–216.Google Scholar
  52. 51.
    D.W. Clayton, J.H. Farrington, G.W. Kenner, J.M. Turner, Peptides. Part VI. Further studies of the synthesis of peptides through anhydrides of sulfuric acid. J Chem Soc 1957, 1398-1407.Google Scholar
  53. 52.
    G.W. Anderson, F.M. Callahan, Racemization by the dicyclohexylcarbodiimide method of peptide synthesis. J. Amer. Chem. Soc. 80: 2902–2903 (1958).CrossRefGoogle Scholar
  54. 53.
    N.A. Smart, G.T. Young, M.W. Williams, Amino acids and peptides. Part XV. Racemization during peptide synthesis. J. Chem. Soc. 1960, 3902-3912; M.W. Williams, G.T. Young, Amino acids and peptides. Part XVI. Further studies of racemization during peptide synthesis. J Chem Soc 1963, 881-889.Google Scholar
  55. 54.
    D.S. Kemp, Racemization in peptide synthesis. The Peptides, vol. 1. (E. Gross, J. Meienhofer eds.) Acad. Press New York 1979 pp. 315–383.Google Scholar
  56. 55.
    M. Bodanszky, Stepwise synthesis of peptides by the nitrophenylester method. Ann N Y Acad Sci 88:655–664(1960).CrossRefGoogle Scholar
  57. 56.
    F. Weygand, D. Hoffmann, E. Wünsch, Synthesis of peptides with dicyclohexylcarbodiimide by addition of N-hydroxysuccinimide. Z. Naturforschung 21 b: 426 (1966).Google Scholar
  58. 57.
    M Itoh, Racemization suppression by the use of ethyl hydroximino-2-cyanoacetate in Chemistry and Biology of Peptides (J. Meienhofer, ed.) Ann Arbor Science Pub. Ann Arbor, Michigan 1972 pp. 365–367.Google Scholar
  59. 58.
    T. Mukaiyama, R. Matsueda, M. Ueki, The oxidation-reduction condensation. The Peptides, vol.2 (E. Gross, J. Meienhofer eds.) Acad. Press New York 1979 pp. 383–416.Google Scholar
  60. 59.
    O. Hollitzer, A. Seewald, W. Steglich, 4,6-Diphenylthieno [3,4d] [1,3]dioxol-2-one 5,5-dioxide. A novel activating agent in peptide synthesis. Angew. Chem. 15: 444–445 (1976).CrossRefGoogle Scholar
  61. 60.
    I. Ugi, The four component synthesis. The Peptides vol. 2 (E. Gross, J. Meienhofer, eds.) Acad. Press New York 1979, pp. 365–381.Google Scholar

Copyright information

© Spinger-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Theodor Wieland
    • 1
  • Miklos Bodanszky
    • 2
  1. 1.Max-Planck-Institut für Medizinische ForschungHeidelbergGermany
  2. 2.PrincetonUSA

Personalised recommendations