Introduction. Amino Acids and a Few Early Paradigmatic Peptides

  • Theodor Wieland
  • Miklos Bodanszky


Today, as we are approaching the end of the 20th century, research in chemistry of natural products can look back on two hundred successful years. Organic chemistry, the chemistry of living matter has dealt, since the beginning of its systematic development, with the isolation and analysis of simple natural products. Substances, that became conspicuous on account of their taste, color, odor or some biological activity stood at the focus of interest. As the skills of chemists increased, they turned to more complex problems, such as the structure and chemistry of fats, sugars, or the building components of nucleic acids. Thus began the study of natural products of greater molecular weight. Proteins, the functional molecules of all life processes, belong to this category. They initially appeared as most unsuited objectives of research: many are insoluble in water (keratin from horn, hair and hide; collagen from tendon; silk), the soluble ones, were usually obtained, according to the methods at hand, in non-homogeneous form not as crystalline materials, but as ill-defined substances with indeterminable molecular weight. Peptides, building components of proteins, while more accessible to chemical manipulations, were found in nature in concentrations too low to stimulate systematic chemical studies until the turn of the century.


Peptide Bond Silk Fibroin Peptide Chain Cyclic Peptide Levulinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Hofmeister, Naturwiss. Rundschau 17: 529–545 (1902).Google Scholar
  2. 2.
    E. Fischer, Autoreferat, Chem. Ztg. 26: 93 (1902).Google Scholar
  3. 3.
    E. Fischer, E. Fourneau, Über einige Derivate des Glykokolls Ber. dtsch. Chem. Ges. 34: 2868-2879.Google Scholar
  4. 4.
    F. Sanger, The arrangement of amino acids in proteins, Advan. Protein Chem. 7: 1–67 (1952).CrossRefGoogle Scholar
  5. 5.
    J.S. Fruton, Early theories of protein structure, Annals New York Acad. Sci. 325:1–18 (1979).CrossRefGoogle Scholar
  6. 6.
    N. Troensegard, Über die Struktur des Proteinmoleküls; eine chemische Untersuchung, E. Munksgaard, Kopenhagen, 1942.Google Scholar
  7. 7.
    D. Wrinch, Chemical aspects of the structure of small pepidtides, Munksgaard, Copenhagen, 1960.Google Scholar
  8. 8.
    M. Bergmann, C. Niemann, On blood fibrin. A contribution to the problem of protein structure, J. Biol. Chem. 115: 77–85 (1936).Google Scholar
  9. 9.
    M.F. Perutz, M.G. Rossmann, A.F. Cullis, H. Muirhead, G. Will, A.C.T. North, Structure of haemoglobin, Nature 185: 416–422 (1960); J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davies, D.C. Phillips, V.C. Shore, Structure of myoglobin, Nature 185: 422-427 (1960).PubMedCrossRefGoogle Scholar
  10. 10.
    Springer Advanced Texts in Chemistry (Ch.R. Cantor, ed.) Springer Verlag New York Heidelberg Berlin, 2nd corr: printing 1979.Google Scholar
  11. 11.
    From H.B. Vickery, The history of the discovery of amino acids II. Advan. Protein Chem. 26: 82–173 (1972).Google Scholar
  12. 12.
    W. Leinfelder, E. Zehelein, M.-A. Mandra, Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine, Nature 331: 723–725 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Magnusson, L. Sottrup-Jensen, T.E. Petersen, H.R. Morris, A. Dell, Primary structure of the vitamin K-dependent part of prothrombin, FEBS-Lett. 44: 189–193 (1974). P. Fernlund, J. Stenflo, P. Roepstorf, J. Thomsen, Carboxyglutamic acids. The vitamin K-dependent structures in prothrombin. J. Biol. Chem. 250: 6125-6133 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    For reviews see: R.L.M. Synge, Quart. Revs. (London) 3: 245 (1949)CrossRefGoogle Scholar
  15. E. Bricas, Ch. Fromageot, Advan. Prot Chem. 8:1–125 (1953)CrossRefGoogle Scholar
  16. S.G. Waley, Advan. Prot. Chem. 21:1–114 (1966).CrossRefGoogle Scholar
  17. 15.
    E.F. Pai, G.E. Schulz, The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates, J. biol. Chem. 258: 1752–1757 (1983).PubMedGoogle Scholar
  18. 16.
    A. Meister, M.E. Anderson, Glutathione, Ann. Rev. Biochem. 52: 711–760 (1983).PubMedCrossRefGoogle Scholar
  19. 17.
    See G.B. Henderson, A.H. Fairlamb, Trypanothione metabolism: a chemotherapeutic target in tryptanosomatids, Parasitology Today, 3: 312–315 (1987).PubMedCrossRefGoogle Scholar
  20. 18.
    H.M. Lenhoff, Behavior, Hormones, and Hydra, Science 161: 434–442 (1968).PubMedCrossRefGoogle Scholar
  21. 19.
    S.G. Waley, Acidic peptides of the lens, Biochem. J. 64: 715–726 (1956).PubMedGoogle Scholar
  22. 20.
    Glutathione, Parts A and B, Dolphin, D., Avramovic, O., Poulson, R. eds. Wiley New York (1989).Google Scholar
  23. 21.
    P.A. Plattner, N. Clauson-Kaas, Über ein Welke-erzeugendes Stoffwechselprodukt von Fusarium lycopersici Sacc. Helv. Chim. Acta 28: 188–195 (1945).CrossRefGoogle Scholar
  24. 22.
    R.W. Curtis, Root curvatures induced by culture filtrates of Aspergillus niger, Science 128: 661–662 (1958).PubMedCrossRefGoogle Scholar
  25. 23.
    M. Bodanszky, G.L. Stahl, The structure and synthesis of malformin A. Proc. Natl. Acad. Sci. USA 71: 2791–2794 (1974).PubMedCrossRefGoogle Scholar
  26. 24.
    P.A. Plattner, U. Nager, Über die Konstitution von Enniatin B, Helv. Chim. Acta 31: 665–671 (1948).PubMedCrossRefGoogle Scholar
  27. 25.
    Yu. A. Ovchinnikov, V.T. Ivanov, A.A. Kiryushkin, M.M. Shemyakin, Synthesis of cyclic depsipeptides, Peptides Proc. 5th Europ. Symp., Oxford, Sep. 1962, 207-219 (1963).Google Scholar
  28. 26.
    M.M. Shemyakin, Yu A. Ovchinnikov, V.T. Ivanov, A.A. Kiryushkin, The structure of enniatins and related antibiotics, Tetrahedron 19: 581–591 (1963).PubMedCrossRefGoogle Scholar

Copyright information

© Spinger-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Theodor Wieland
    • 1
  • Miklos Bodanszky
    • 2
  1. 1.Max-Planck-Institut für Medizinische ForschungHeidelbergGermany
  2. 2.PrincetonUSA

Personalised recommendations