Skip to main content

Protein Denaturation During Heat Shock and Related Stress

  • Conference paper
Stress Proteins

Abstract

In this chapter, we discuss two questions raised by heat shock studies: what are the effects of stress on cells, and is the role of heat shock proteins to prevent as well as cure cell damage?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  PubMed  CAS  Google Scholar 

  • Anderson RL, Hahn GM (1985) Differential effects of hyperthermia on the Na+, K+-ATPase of Chinese hamster ovary cells. Radiat Res 102:314–323

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (1983) Acetylation and methylation patterns of core histones are modified after heat or arsenite treatment of Drosophila tissue culture cells. Nucl Acid Res 11:1389–1404

    Article  CAS  Google Scholar 

  • Arrigo AP, Fakan S, Tissières A (1980) Localization of the heat shock-induced proteins in Drosophila melanogaster tissue culture cells. Dev Biol 78:86–103

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    PubMed  CAS  Google Scholar 

  • Berrios S, Fisher PA (1988) Thermal stabilization of putative karyoskeletal protein-enriched frac­tions from Saccharomyces cerevisiae. Mol Cell Biol 8:4573–4575

    PubMed  CAS  Google Scholar 

  • Black AR, Subjeck JR (1989) Involvement of rRNA synthesis in the enhanced survival and recovery of protein synthesis seen in thermotolerance. J Cell Physiol 138:439–449

    Article  PubMed  CAS  Google Scholar 

  • Bochkareva ES, Lissin NM, Girshovich AS (1988) Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature (Lond) 336:254–257

    Article  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol 5:949–956

    PubMed  CAS  Google Scholar 

  • Bond U, Agell N, Haas LH, Redman K, Schlesinger MJ (1988) Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem 263:2384–2388

    PubMed  CAS  Google Scholar 

  • Burdon RH, Gill VM, Rice-Evans C (1987) Oxidative stress and heat shock protein induction in human cells. Free Rad Res Comms 3:129–139

    Article  CAS  Google Scholar 

  • Calderwood SK, Hahn GM (1983) Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Acta 756:1–8

    Article  PubMed  CAS  Google Scholar 

  • Camato R, Tanguay RM (1982) Changes in the methylation pattern of core histones during heat shock in Drosophila cells. EMBO J 1:1529–1532

    PubMed  CAS  Google Scholar 

  • Carlson N, Rogers S, Rechsteiner M (1987) Microinjection of ubiquitin: changes in protein degrada­tion in HeLa cells subjected to heat shock. J Cell Biol 104:547–555

    Article  PubMed  CAS  Google Scholar 

  • Carper SW, Duffy JJ, Gerner EW (1987) Heat shock proteins in thermotolerance and other cellular processes. Cancer Res 47:5249–5255

    PubMed  CAS  Google Scholar 

  • Cheng KH, Hui SW, Lepock JR (1987) Protection of the membrane calcium adenosine tripho­sphatase by cholesterol from thermal inactivation. Cancer Res 47:1255–1262

    PubMed  CAS  Google Scholar 

  • Chrétien P, Landry J (1988) Enhanced constitutive expression of 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster cells. J Cell Physiol 137:157–166

    Article  PubMed  Google Scholar 

  • Collier NC, Schlesinger MJ (1986) The dynamic state of heat shock proteins in chicken embryo fibroblasts. J Cell Biol 103:1495–1507

    Article  PubMed  CAS  Google Scholar 

  • Collier NC, Heuser J, Aach Levy M, Schlesinger MJ (1988) Ultrastructure and biochemical analysis of the stress granule in chicken embryo fibroblasts. J Cell Biol 106:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603

    Article  PubMed  CAS  Google Scholar 

  • Drummond IAS, Steinhardt RA (1987) The role of oxidative stress in the induction of Drosophila heat shock proteins. Exp Cell Res 173:439–449

    Article  PubMed  CAS  Google Scholar 

  • Dubois MF, Ferrieux C, Robert N, Lebon P, Hovanessian AG (1987) Modification, after heat shock, of the antiviral state induced by interferon in murine L cells. Ann Inst Pasteur/Virol 138:345–353

    Article  CAS  Google Scholar 

  • Dubois MF, Galabru J, Lebon P, Safer B, Hovanessian AG (1989) Reduced activity of the interferon-induced double-stranded RNA-dependent protein kinase during a heat shock stress. J Biol Chem 264:12165–12171

    PubMed  CAS  Google Scholar 

  • Duncan R, Milburn SC, Hershey JWB (1987) Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. J Biol Chem 262:380–388

    PubMed  CAS  Google Scholar 

  • Edington BV, Whelan SA, Hightower LE (1989) Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induc­tion. J Cell Physiol 139:219–228

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Hancock DC (1985) Studies on the interaction of the human c-myc protein with cell nuclei: p62c-myc as a member of a discrete subset of nuclear proteins. Cell 43:253–261

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    Article  PubMed  CAS  Google Scholar 

  • Glover CVC, Vavra KJ, Guttman SD, Gorovsky MA (1981) Heat shock and deciliation induce phosphorylation of histone H1 in T.pyriformis. Cell 23:73–77

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg AL (1985) Production of abnormal proteins in E. coli stimulates transcription of Ion and other heat shock genes. Cell 41:587–595

    Article  PubMed  CAS  Google Scholar 

  • Haase-Pettingell CA, King J (1988) Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. J Biol Chem 263:4977–4983

    PubMed  CAS  Google Scholar 

  • Hall BG (1983) Yeast thermotolerance does not require protein synthesis. J Bacteriol 156:1363–1365

    PubMed  CAS  Google Scholar 

  • Hallberg RL (1986) No heat shock protein synthesis is required for induced thermostabilization of translational machinery. Mol Cell Biol 6:2267–2270

    PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427

    Article  PubMed  CAS  Google Scholar 

  • Kane JF, Hartley DL (1988) Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotech 6:95–101

    Article  CAS  Google Scholar 

  • Kennedy IM, Burdon RH, Leader DP (1984) Heat shock causes diverse changes in the phos­phorylation of the ribosomal proteins of mammalian cells. FEBS Lett 169:267–273

    Article  PubMed  CAS  Google Scholar 

  • Kusukawa N, Yura T (1988) Heat shock protein GroE in Escherichia coli: key protective roles against thermal stress. Genes Dev 2:874–882

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Bernier D, Chrétien P, Nicole LM, Tanguay RM (1982) Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res 61:428–437

    Google Scholar 

  • Landry J, Chrétien P, Lambert H, Hichey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    Article  PubMed  CAS  Google Scholar 

  • Lepock JR, Frey HE, Rodahl AM, Kruuv J (1988) Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J Cell Physiol 137:14–24

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HRB (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 4:3137–3143

    PubMed  CAS  Google Scholar 

  • Li GC, Werb A (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA 79:3218–3222

    Article  PubMed  CAS  Google Scholar 

  • Littlewood TD, Hancock DC, Evan GI (1987) Characterization of a heat shock-induced insoluble complex in the nuclei of cells. J Cell Sci 88:65–72

    PubMed  CAS  Google Scholar 

  • Lutz Y, Jacob M, Fuchs JP (1988) The distribution of two hnRNP-associated proteins defined by a monoclonal antibody is altered in heat-shocked HeLa cells. Exp Cell Res 175:109–124

    Article  PubMed  CAS  Google Scholar 

  • Lüscher B, Eisenman RN (1988) c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol Cell Biol 8:2504–2512

    PubMed  Google Scholar 

  • Magun BE, Fennie CW (1981) Effects of hyperthermia on binding, internalization, and degradation of epidermal growth factor. Radiat Res 86:133–146

    Article  PubMed  CAS  Google Scholar 

  • Maridonneau-Parini I, Clerc J, Polla BS (1988) Heat shock inhibits NADPH oxidase in human neutrophils. Biochem Biophys Res Commun 154:179–186

    Article  PubMed  CAS  Google Scholar 

  • Massicotte-Nolan P, Glofcheski DJ, Kruuv J, Lepock JR (1981) Relationship between hyperthermic cell killing and protein denaturation by alcohols. Radiat Res 87:284–299

    Article  PubMed  CAS  Google Scholar 

  • Mattei D, Scherf A, Bensaude O, Pereira da Silva L (1989) A heat-shock protein from the human malaria parasite Plasmodium falciparum induces autoantibodies. Eur J Immunol 19:1823–1828

    Article  PubMed  CAS  Google Scholar 

  • Minton KW, Karmin P, Hahn GM, Minton AP (1982) Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci USA 79:7107–7111

    Article  PubMed  CAS  Google Scholar 

  • Mivechi NF, Dewey WC (1985) DNA polymerase α and β activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells. Radiat Res 103:337–350

    Article  PubMed  CAS  Google Scholar 

  • Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham H (1985) What turns on heat shock genes? Nature (Lond) 317:477–478

    Article  CAS  Google Scholar 

  • Napolitano EW, Pachter JS, Liem RKH (1987) Intracellular distribution of mammalian stress proteins. J Biol Chem 262:1493–1504

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Morange M, Bensaude O (1989) Protein denaturation during heat shock and related stress. J Biol Chem 264:10487–10492

    PubMed  CAS  Google Scholar 

  • Nolan NL, Kidwell WR (1982) Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells. Radiat Res 90:187–203

    Article  PubMed  CAS  Google Scholar 

  • Pain R (1987) Protein folding for pleasure and for profit. Trends Biochem Sci 12:309–312

    Article  CAS  Google Scholar 

  • Parag HA, Raboy B, Kulka RG (1987) Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J 6:55–61

    PubMed  CAS  Google Scholar 

  • Parker KA, Bond U (1989) Analysis of pre-rRNAs in heat-shocked HeLa cells allows identification of the upstream termination site of human polymerase I transcription. Mol Cell Biol 9:2500–2512

    PubMed  CAS  Google Scholar 

  • Parsell DA, Sauer RT (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 3:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1984). Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3:3095–3100

    PubMed  CAS  Google Scholar 

  • Pelham HRB (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1988) Heat shock proteins: coming in from the cold. Nature (Lond) 332:776–777

    Article  CAS  Google Scholar 

  • Pouchelet M, St-Pierre E, Bibor-Hardy V, Simard R (1983) Localization of the 70000 dalton heat-induced protein in the nuclear matrix of BHK cells. Exp Cell Res 149:451–459

    Article  PubMed  CAS  Google Scholar 

  • Ropp M, Courgeon AM, Calvayrac R, Best-Belpomme M (1983) The possible role of the superoxide ion in the induction of heat-shock and specific proteins in aerobic Drosophila cells during return to normoxia after a period of anaerobiosis. Can J Biochem Cell Biol 61:456–461

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg B, Kemeny G, Switzer RC, Hamilton TC (1971) Quantitative evidence for protein denaturation as the cause of thermal death. Nature (Lond) 232:471–473

    Article  CAS  Google Scholar 

  • Sadis S, Raghavendra K, Schuster TM, Hightower LE (1990) Biochemical and biophysical com­parison of bacterial DnaK and mammalian hsc73, two members of an ancient stress protein family. In: Villa Franca JJ (ed) Current research in protein chemistry, Academic Press, Lond NY

    Google Scholar 

  • Sciandra JJ, Subjeck JR (1984) Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res 44:5188–5194

    PubMed  CAS  Google Scholar 

  • Spiro JJ, Denman DL, Dewey WC (1982) Effect of hyperthermia on CHO DNA polymerases α and β. Radiat Res 89:134–149

    Article  PubMed  CAS  Google Scholar 

  • Subjeck JR, Sciandra JJ (1982) Coexpression of thermotolerance and heat-shock proteins in mammalian cells. In: Heat Shock From Bacteria to Man. Schlesinger MJ, Ashburner M, Tissières A (eds.) Cold Spring Harbor Lab, Cold Spring Harbor, NY, pp 405–411

    Google Scholar 

  • Tanguay RM, Vincent M (1982) Intracellular translocation of cellular and heat shock induced pro­teins upon heat shock in Drosophila Kc cells. Can J Biochem 60:306–315

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen RA, Acton MA, Neidhardt FC (1987) Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev 1:525–531

    Article  PubMed  CAS  Google Scholar 

  • Velazquez JM, Lindquist S (1984) Hsp 70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36:655–662

    Article  PubMed  CAS  Google Scholar 

  • Warters RL, Brizgys LM, Sharma R, Roti Roti JL (1986) Heat shock (45 °C) results in an increase of nuclear matrix protein mass in HeLa cells. Int J Radiât Biol 50:253–268

    Article  CAS  Google Scholar 

  • Welch WJ, Mizzen LA (1988) Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribo-nucleoprotein complexes. J Cell Biol 106:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Suhan JP (1986) Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J Cell Biol 103:2035–2052

    Article  PubMed  CAS  Google Scholar 

  • Westwood JT, Steinhardt RA (1989) Effects of heat and other inducers of the stress response on protein degradation in Chinese hamster and Drosophila cells. J Cell Physiol 139:196–209

    Article  PubMed  CAS  Google Scholar 

  • Widelitz RB, Magun BE, Gerner EW (1986) Effects of cycloheximide on thermotolerance expres­sion, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblats. Mol Cell Biol 6:1088–1094

    PubMed  CAS  Google Scholar 

  • Wolffe AP, Perlman AJ, Tata JR (1984) Transient paralysis by heat shock of hormonal regulation of gene expression. EMBO J 3:2763–2770

    PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bensaude, O., Pinto, M., Dubois, MF., Van Trung, N., Morange, M. (1990). Protein Denaturation During Heat Shock and Related Stress. In: Schlesinger, M.J., Santoro, M.G., Garaci, E. (eds) Stress Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75815-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75815-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75817-1

  • Online ISBN: 978-3-642-75815-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics