Supercomputing pp 279-293 | Cite as

Solving Linear Equations by Extrapolation

  • Walter Gander
  • Gene H. Golub
  • Dominik Gruntz
Conference paper
Part of the NATO ASI Series book series (volume 62)

Abstract

This is a survey paper on extrapolation methods for vector sequences. We have simplified some derivations and we give some numerical results which illustrate the theory.

Keywords

Rounding Error Teal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Brezinski: Accélération de la Convergence en Analyse Numérique, Lecture notes in Mathematics 584, Springer 1977MATHGoogle Scholar
  2. [2]
    A. Buja, Hastie and Tibshirani: Linear Smoothers and Additive Models, Annals of Statistics, Vol. 17, No. 2, June 1989.Google Scholar
  3. [3]
    J.P. Delahaye: Sequence Transformations, Springer 1988CrossRefMATHGoogle Scholar
  4. [4]
    W. Gander and G. Golub: Discussion of Buja A., Hastie and Tibshirani: Linear Smoothers and Additive Models, Annals of Statistics, Vol. 17, No. 2, June 1989Google Scholar
  5. [5]
    W.F. Ford and A. Sidi: Recursive Algorithms for Vector Extrapolation Methods, Applied Numerical Mathematics 4, (1988), p. 477–489.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    H. Ortloff: Asymptotic Behaviour and Acceleration of Iterative Sequences, Numer. Math. 49, (1986), p. 545–559.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    Y. Saad: The Lanczos Biorthogonalization Algorithm and other oblique projection methods for solving large unsymmetric systems, SIAM J. Numeri. Anal., Vol. 19, No. 3, June 1982.Google Scholar
  8. [8]
    Y. Saad: Preconditioning techniques for nonsymmetric and indefinite linear systems, Journal of Computational and Applied Mathematics 24, (1988), p 89–105.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    A. Sidi: Convergence and Stability Properties of Minimal Polynomial and Reduced Rank Extrapolation Algorithms, SIAM J. Numeri. Anal., Vol. 23, No.1, February 1986, p. 178–196.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    A. Sidi and J. Bridger: Convergence and stability Analysis for some Vector Extrapolation Methods in the Presence of Defective Iteration Matrices, Journal of Computational and Applied Mathematics 22, (1988), p. 35–61.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    A. Sidi: Extrapolation vs. Projection methods for linear Systems of Equations, Journal of Computational and Applied Mathematics 22, (1988), p. 77–88.Google Scholar
  12. [12]
    A. Sidi: Application of Vector Extrapolation Methods to Consistent Singular Linear Systems, Technical Report # 540 Technion, February 1989.Google Scholar
  13. [13]
    A. Sidi and M.L. Celestina: Convergence Acceleration for Vector Sequences and Applications to Computational Fluid Dynamics, NASA Technical Memorandum 101327, ICOMP-88-17, 1988Google Scholar
  14. [14]
    A. Sidi, W.F. Ford and D.A. Smith, Acceleration of Convergence of Vector Sequences, SIAM J. Numeri. Anal., Vol. 23, No.1, February 1986, p. 178–196.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    D.A. Smith, W.F. Ford and A. Sidi: Extrapolation Methods for Vector Sequences, SIAM Review, Vol. 29, No. 2, June 1987, p. 199–233.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    D.A. Smith, W.F. Ford and A. Sidi: Correction to “Extrapolation Methods for Vector Sequences”, SIAM Review, Vol. 30, No. 4, December 1988Google Scholar
  17. [17]
    R.C.E. Tan: Implementation of the topological ɛ-Algorithm, SIAM J. Sci. Stat. Comput. Vol. 9, No. 5. September 1988Google Scholar
  18. [18]
    R.S. Varga: Matrix Iterative Analysis, Prentice-Hall Inc., New Jersey, 1962Google Scholar
  19. [19]
    J.H. Wilkinson: The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1988MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Walter Gander
    • 1
  • Gene H. Golub
    • 2
  • Dominik Gruntz
    • 1
  1. 1.Institut für wissenschaftliches RechnenEidgenössische Technische HochschuleZürichSwitzerland
  2. 2.Department of Computer ScienceStanford UniversityStandfordUSA

Personalised recommendations