Skip to main content

Immunomodulation of HPV 16 Immortalized Exocervical Epithelial Cells

  • Conference paper
Genital Papillomavirus Infections

Abstract

One of the earliest indications that cervical cancer is a sexually transmitted disease comes from the observation of Rigoni-Stern [1] who in 1842 published a statistical paper indicating that “cancer of the uterus” was rare among virgins and nuns and quite common among married women and widows. Although the precise etiology of cervical neoplasia is unknown, the epidemiological profile of the disease makes it almost certain that an infectious agent, as a result of sexual transmission, plays a part in the carcinogenesis [2–4]. In the past few years evidence from various sources, including cytology, histology, and immunohistochemistry, has shown that there is an association between human papillomavirus infection and cervical neoplasia [5–7]. Furthermore, human papillomas have a single host species (Homo sapiens) and multiply in mucosal or differentiated cutaneous epithelium at specific anatomical sites. Today there are over 50 various human papillomavirus genotypes; of these a small number, i.e., 6, 11, 16, 18, 31, 33, and 35, and 52b, are found in intraepithelial and invasive cervical cancer [8–11]. Human papillomaviruses 6 and 11 are associated predominantly with benign lesions (condylomas or low-grade dysplasia), whereas the other types occur in invasive cervical carcinomas. Types 16 and 18 occur in most invasive cervical carcinomas; about 95% of women with cervical cancer are found to be positive for a papillomavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rigoni-Stem (1842) Fatti statistici relativi alle malattie cancerose the servirono di base alle poche cose dette dal dott. G Servire Progr Pathol Ther 2: 507–517

    Google Scholar 

  2. Martinez I (1969) Relationship of squamous cell carcinoma of the cervix uteri to squamous cell carcinoma of the penis among Puerto Rican women married to men with penile carcinoma. Cancer 24: 777–780

    Article  PubMed  CAS  Google Scholar 

  3. Rotkin ID (1973) A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Res 33: 1353–1367

    PubMed  CAS  Google Scholar 

  4. Singer A, Reid BL, Coppleson M (1976) A hypothesis: the role of a high-risk male in the etiology of cervical carcinoma. Am J Obstet Gynecol 126: 110–115

    PubMed  CAS  Google Scholar 

  5. Broker TR, Botchan M (1986) Retrospectives and prospectives. In: Botchan M, Grodzicker T, Sharp PA (eds) Cancer cells 4/DNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 17–36

    Google Scholar 

  6. Pister H (1987) Relationship of papillomaviruses to anogenital cancer. Obstet Gynecol Clin North Am 14: 349–361

    Google Scholar 

  7. Peto R, zur Hausen H (eds) (1986) Bradbury report 21: viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 362

    Google Scholar 

  8. Campion MJ, McCance DJ, Cuzick J, Singer A (1986) Progressive potential of mild cervical atypia: prospective cytological and virological study. Lancet 1: 237–249

    Article  Google Scholar 

  9. Lorincz AL, Temple GF, Kurman RJ, Jenson AB, Lancaster WD (1987) Oncogenic association of specific human papillomavirus types with cervical neoplasia. J Natl Cancer Inst 79: 671–677

    PubMed  CAS  Google Scholar 

  10. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3: 1151–1157

    PubMed  CAS  Google Scholar 

  11. Yajima H, Noda T, de Villiers EM, Yajima A, Yamamoto K, Noda K, Ito Y (1988) Isolation of a new type of human papillomavirus (HPV52b) with a transforming activity from cervical cancer tissue. Cancer Res 48: 7164–7172

    PubMed  CAS  Google Scholar 

  12. Reeves WC, Caussy D, Brinton LA, Brenes MM, Montalvan P, Gomez B, DeBritton RC, Morice E, Gaitan E, Loo de Lao S, Rawls WE (1987) Case-control study of human papillomaviruses and cervical cancer in Latin America. Int J Cancer 40: 450–454

    Article  PubMed  CAS  Google Scholar 

  13. de Villiers EM, Wagner D, Schneider A, Wesch H, Miklaw H, Wahrendorf J, Papendick U, zur Hausen H (1987) Human papillomavirus infections in women with and without abnormal cervical cytology. Lancet 2: 703–706

    Article  PubMed  Google Scholar 

  14. Meanwell CA, Cox MF, Blackledge G, Maitland NJ (1987) HPV 16 DNA in normal and malignant cervical epithelium: implications for the aetiology and behaviour of cervical neoplasia. Lancet 1: 703–707

    Article  PubMed  CAS  Google Scholar 

  15. Young LS, Bevan IS, Johnson MA, Blomfield PI, Bromidge T, Maitland NJ, Woodman CBJ (1989) The polymerase chain reaction: a new epidemiological tool for investigating cervical human papillomavirus infection. Br Med J 298: 14–18

    Article  CAS  Google Scholar 

  16. Yasumoto S, Burkhardt AL, Doniger J, DiPaolo JA (1986) Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J Virol 57: 572–577

    PubMed  CAS  Google Scholar 

  17. Pirisi L, Yasumoto S, Feller M, Doniger J, DiPaolo JA (1987) Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol 61: 1061–1066

    PubMed  CAS  Google Scholar 

  18. Woodworth CD, Bowden PE, Doniger J, Pirisi L, Barnes W, Lancaster WD, DiPaolo JA (1988) Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res 48: 4620–4628

    PubMed  CAS  Google Scholar 

  19. Tay SK, Jenkins D, Maddox P, Singer A (1987) Lymphocyte phenotypes in cervical intraepithelial neoplasia and human papillomavirus infection. Br J Obstet Gynaecol 94: 16–21

    Article  PubMed  CAS  Google Scholar 

  20. Herberman RB, Ortaldo JR (1981) Natural killer cells: their role in defense against disease. Science 214: 24–30

    Article  PubMed  CAS  Google Scholar 

  21. Lopez C, Kirkpatrick D, Fitzgerald P (1982) The role of NK (HSV-1) effector cells in resistance to herpesvirus infection in man. In: Herberman RB (ed) NK cells and other natural effector cells. Academic, New York, pp 1445–1450

    Google Scholar 

  22. West WH, Cannon GB, Kay HD, Bonnard GD, Herberman RB (1977) Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: characterization of the effector cells. J Immunol 118: 355–361

    PubMed  CAS  Google Scholar 

  23. Tay SK, Jenkins D, Singer A (1987) Natural killer cells in cervical intraepithelial neoplasia and human papillomavirus infection. Br J Obstet Gynaecol 94: 901–906

    Article  PubMed  CAS  Google Scholar 

  24. Barnett SC, Evans CH (1986) Leukoregulin-increased plasma membrane permeability and associated ionic fluxes. Cancer Res 46: 2686–2692

    PubMed  CAS  Google Scholar 

  25. Ransom JH, Evans CH, McCabe RP, Pomato N, Heinbaugh JA, Chin M, Hanna MG Jr (1985) Leukoregulin, a direct-acting anticancer immunological hormone that is distinct from lymphotoxin and interferon. Cancer Res 45: 851–862

    PubMed  CAS  Google Scholar 

  26. Evans CH, Baker PD (1988) Tumor-inhibitory antibiotic uptake facilitated by leukoregulin: a new approach to drug delivery. J Natl Cancer Inst 80: 861–863

    Article  PubMed  CAS  Google Scholar 

  27. Evans CH, Héinbaugh JA, Ransom JH (1987) Flow cytometric evaluation of leukoregulin as an intrinsic molecular mediator of natural killer lymphocyte cytotoxicity. Lymphokine Res 6: 277–297

    PubMed  CAS  Google Scholar 

  28. Evans CH, Barnett SC, Gellen BA, Furbert-Harris P, Sheehy PA, Barker JL, Baker PA, Wilson AC, Farley EK, D’Alessandro F (in press) Biological and molecular characteristics of leukoregulin action. In: Groopman J, Evans C, Golde D (eds) Mechanisms of action and therapeutic applications of biologicals in cancer and immune deficiency disorders. Liss, New York

    Google Scholar 

  29. Ransom JH, Evans CH (1982) Lymphotoxin enhances the susceptibility of neoplastic and preneoplastic cells to natural killer cell mediated destruction. Int J Cancer 29: 451–458

    Article  PubMed  CAS  Google Scholar 

  30. Trinchieri G, Santoli D (1978) Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med 147: 1314–1333

    Article  PubMed  CAS  Google Scholar 

  31. Evans CH, Ransom JH (1984) The anticancer action of lymphotoxin. In: Goldstein AL (ed) Thymic hormones and lymphokines. Plenum, New York, pp 357–364

    Google Scholar 

  32. Barnett SC, Evans CH (1986) Leukoregulin increased plasma membrane permeability and associated ionic fluxes. Cancer Res 46: 2686–2692

    PubMed  CAS  Google Scholar 

  33. Barnett SC, Evans CH (1986) Calcium dependent membrane destabilization by the antitumor lymphokine leukoregulin. Fed Proc 45: 488

    Google Scholar 

  34. Sheehy PA, Barnett SC, Evans CH, Barker JL (1988) Activation of ion channels in tumor cells by leukoregulin, a cytostatic lymphokine. JNCI 80: 868–871

    PubMed  CAS  Google Scholar 

  35. Barnett SC, Evans CH (1988) Leukoregulin induced translocation of protein kinase C activity in K562 cells. Clin Exp Immunol 73: 505–509

    PubMed  CAS  Google Scholar 

  36. Djeu JY, Stocks N, Zoon K, Stanton GJ, Timonen T, Herberman RB (1982) Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes viruses. J Exp Med 156: 1222–1234

    Article  PubMed  CAS  Google Scholar 

  37. Kasahara T, Djeu JY, Dougherty SF, Oppenheim JJ (1983) Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: interleukin-2, interferon, and colony stimulating factor. J Immunol 131: 2379–2385

    PubMed  CAS  Google Scholar 

  38. Trinchieri G, Perussia B (1984) Human natural killer cells: biologic and pathologic aspects. Lab Invest 50: 489–513

    PubMed  CAS  Google Scholar 

  39. Henney CS, JuriBayashi K, Kern DE, Gillis S (1981) Interleukin-2 augments natural killer cell activity. Nature 291: 335–338

    Article  PubMed  CAS  Google Scholar 

  40. Schneider A, Papendick U, Gissmann L, De Villiers EM (1987) Interferon treatment of human genital papillomavirus infection: importance of viral type. Int J Cancer 40: 610–614

    Article  PubMed  CAS  Google Scholar 

  41. Weck PK, Whisnant JK (1987) Therapeutic approaches to the treatment of human papillomavirus diseases. Cancer Cells 5: 393–402

    Google Scholar 

  42. Herberman RB, Ortaldo JR, Bonnard GD (1979) Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature 277: 221–223

    Article  PubMed  CAS  Google Scholar 

  43. Trinchieri G, Granata D, Perussia B (1978) Interferon-induced resistance of fibroblasts to cytolysis mediated by natural killer cells: specificity and mechanism. J Immunol 126: 335–340

    Google Scholar 

  44. Uchida A, Vanky F, Klein E (1985) Natural cytotoxicity of human blood lymphocytes and monocytes and their cytotoxic factors: effect of interferon on target cell susceptibility. JNCI 75: 849–857

    PubMed  CAS  Google Scholar 

  45. Anderson TM, Ibayashi Y, Tokuda Y, Colquhoun SD, Holmes EC, Golub SH (1988) Effects of systemic recombinant interleukin-2 on natural killer and lymphokine activated killer activity of human tumor infiltrating lymphocytes. Cancer Res 1180–1183

    Google Scholar 

  46. Porreco R, Penn I, Droegemueller W, Greer B, Makowski E (1975) Gynecologic malignancies in immunosuppressed organ homograft recipients. J Obstet Gynecol 45: 359–364

    CAS  Google Scholar 

  47. Obalek S, Glinski W, Hafleck M, Orth G, Jablonska S (1980) Comparative studies on cell-mediated immunity in patients with different warts. Dermatologica 161: 73–83

    Article  PubMed  CAS  Google Scholar 

  48. James K, Hargreave TB (1984) Immunosuppression by seminal plasma and its possible clinical significance. Immunol Today 5: 357–363

    Article  Google Scholar 

  49. Lord EM, Sensabaugh GF, Sites DP (1977) Immunosuppressive activity of human seminal plasma. 1. Inhibition of in vitro lymphocyte activation. J Immunol 118: 1704–1711

    PubMed  CAS  Google Scholar 

  50. Majumddar S, Bapna BC, Mapa MK, Gupta AN, Devi PK, Subrahmanyam D (1982) Effect of seminal plasma and its fractions on in vitro blastogenic response to mitogen. Int J Fertil 27: 224–228

    Google Scholar 

  51. Rees RC, Valley P, Clegg A, Potter CW (1986) Suppression or natural and activated human antitumour cytotoxicity by human seminal plasma. Clin Exp Immunol 63: 687–695

    PubMed  CAS  Google Scholar 

  52. Jablonska S, Orth G, Lutzner MA (1982) Immunopathology of papillomavirus-induced tumours in different tissues. Springer Semin Immunopathol 5: 33–62

    Article  PubMed  CAS  Google Scholar 

  53. Tay SK, Jenkins D, Maddox P, Campion M, Singer A (1987) Subpopulations of langerhans’ cells in cervical neoplasia. Br J Obstet Gynaecol 94: 10–15

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DiPaolo, J.A., Woodworth, C.D., Furbert-Harris, P.M., Evans, C.H. (1990). Immunomodulation of HPV 16 Immortalized Exocervical Epithelial Cells. In: Gross, G., Jablonska, S., Pfister, H., Stegner, HE. (eds) Genital Papillomavirus Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75723-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75723-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75725-9

  • Online ISBN: 978-3-642-75723-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics