Skip to main content

Pericyclic Reactions

  • Chapter
  • 243 Accesses

Abstract

According to Woodward and Hoffmann ([1] p. 182), the pericyclic reactions comprise all concerted intermolecular and intramolecular (electrocyclic, sigmatropic) cycloaddition reactions. The rules of selection of preferable structures for transition states of these reactions based on the principles of orbital approach have found wide acceptance and may serve as an example of an eifective qualitative theory. One should not, however, forget that the formulation of the rules [1] rests on analysis of the general topology rather than on specific geometry of alternative structures of transition states. As will be shown below direct calculations of the PES of pericyclic reactions often introduce quite substantial corrections into conventional notions regarding the coordinate and the structure of a transition state of the pericyclic reaction. On many occasions, only such calculations enable us to answer the question as to whether a reaction is indeed concerted (in other words, proceeding without formation of intermediates) and, if so, whether the bond-making and bond-breaking processes are synchronized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Academic Press, New York

    Google Scholar 

  2. Jug K (1980) Theor Chim Acta 54: 263

    Article  CAS  Google Scholar 

  3. Burke LA, Leroy G (1979) Bull Soc Chim Belg 88: 379

    Article  CAS  Google Scholar 

  4. Duran M, Bertran J (1982) J Chem Soc Perkin Trans 11: 681

    Google Scholar 

  5. Fujimoto H, Inagaki S, Fukui K (1975) J ACS 97:6108; (1976) ibid 98: 2670

    Google Scholar 

  6. Bernardi F, Bottoni A, Robb MA, Schlegel HB, Tonachini G (1985) J ACS 107: 2260

    Article  CAS  Google Scholar 

  7. Segal GA (1974) J ACS 96: 7892

    Article  CAS  Google Scholar 

  8. Bernardi F, Olivucci M, Robb MA, Tonachini G (1986) J ACS 108: 1408

    Article  CAS  Google Scholar 

  9. Bernardi F, Olivucci M, McDouall JJW, Robb MA (1987) J ACS 109: 544

    Article  CAS  Google Scholar 

  10. Bernardi F, Bottoni A, Olivucci M, McDouall JJW, Robb MA, Tonachini G (1988) THEOCHEM 165: 341

    Article  Google Scholar 

  11. Raghavachari K, Haddon RC, Roth HD (1983) J ACS 105: 3110

    Article  CAS  Google Scholar 

  12. Epiotis ND (1973) J ACS 95: 1191

    Article  CAS  Google Scholar 

  13. Sauer J, Sustmann R (1980) Angew Chem Intern Ed Engl 19: 779

    Article  Google Scholar 

  14. Konovalov AI (1983) Uspekhi Khim (Russ Chem Rev) 52: 1852

    CAS  Google Scholar 

  15. Bauld NL, Bellville DJ, Lorenz KT, Pabon RA, Reynolds DW, Wirth DD, Chiou HS, Marsh BK (1987) Acc Chem Res 20: 371

    Article  CAS  Google Scholar 

  16. Basilevsky MV, Ryaboy VM (1987) in: Veselov MG (ed) Current problems of quantum chemistry. The quantum chemical methods. The theory of intermolecular interaction and solid state. Khimia, Moscow (in Russian)

    Google Scholar 

  17. Dewar MJS, Griffin AC, Kirschner S (1974) J ACS 96: 6225

    Article  CAS  Google Scholar 

  18. Dewar MJS, Olivella S, Rzepa HS (1978) J ACS 100: 5650

    Article  CAS  Google Scholar 

  19. Oliva A, Fernandez-Alonso JT, Bertran J (1978) Tetrahedron 34: 2029

    Google Scholar 

  20. Dewar MJS, Olivella S, Stewart JP (1986) J ACS 108: 5771

    Article  CAS  Google Scholar 

  21. Basilevsky MV, Shamov AG (1977) J ACS 99: 1369

    Article  Google Scholar 

  22. Burke LA, Leroy G, Sana M (1975) Theor Chim Acta 40: 313

    Article  CAS  Google Scholar 

  23. Burke LA, Leroy G (1977) Theor Chim Acta 44: 219

    Article  CAS  Google Scholar 

  24. Townshend RE, Ramunni G, Segal G, Hehre WJ, Salem L (1976) J ACS 98: 2190

    Article  CAS  Google Scholar 

  25. Brown FK, Houk KN (1984) Tetrahedron Lett 25: 4609

    Article  CAS  Google Scholar 

  26. Ortega M, Oliva A, Lluch JM, Bertran J (1983) Chem Phys Lett 102: 317

    Article  CAS  Google Scholar 

  27. Houk KN, Lin YT, Brown FK (1986) J ACS 108: 554

    Article  CAS  Google Scholar 

  28. Bernardi F, Bottoni A, Field MJ, Guest MF, Hiller IH, Robb MA, Venturini A (1988) J ACS 110: 3050

    Article  CAS  Google Scholar 

  29. Dewar MJS, Pierini AB (1984) J ACS 106: 203

    Article  CAS  Google Scholar 

  30. Dewar MJS (1984) J ACS 106: 209

    Article  CAS  Google Scholar 

  31. Dewar MJS, Chantranupong L (1983) J ACS 105: 7152

    Article  CAS  Google Scholar 

  32. Basilevsky MV, Shamov AG, Tikhomirov VA (1977) J ACS 99: 1369

    Article  Google Scholar 

  33. Caramella P, Houk KN, Domel-Smith LN (1977) J ACS 99: 4514

    Article  Google Scholar 

  34. Barnard JA, Parrot JK (1976) J Chem Soc Farad Trans II 1: 2404

    Google Scholar 

  35. Dewar MJS (1978) in: Further perspectives in organic chemistry Elsevier, Amsterdam

    Google Scholar 

  36. Mclver JW, Komornicki A (1972) J ACS 94: 2625

    Article  Google Scholar 

  37. Dewar MJS (1975) Chem Brit 11: 95

    Google Scholar 

  38. Jensen A (1983) Theor Chim Acta 63: 269

    Article  CAS  Google Scholar 

  39. Dewar MJS, Kirschner S (1974) J ACS 96: 6809

    Article  CAS  Google Scholar 

  40. Basilevsky MV, Shamov AG (1981) Chem Phys 60: 347

    Article  Google Scholar 

  41. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J ACS 107: 3902

    Article  CAS  Google Scholar 

  42. Kikuchi O (1974) Bull Chem Soc Japan 47: 1551

    Article  CAS  Google Scholar 

  43. Hsu K, Buenker RJ, Peyerimhoff SD (1971) J ACS 93: 2117

    Article  Google Scholar 

  44. Breulet J, Schaefer III HF (1984) J ACS 106: 1221

    Article  CAS  Google Scholar 

  45. Rondan NG, Houk KN (1985) J ACS 107:2099; Rudolf K, Spellmeyer DS, Houk KN (1987) J Org Chem 52: 3708

    Google Scholar 

  46. Cooper W, Walters WD (1958) J ACS 80: 4220

    Article  CAS  Google Scholar 

  47. Garr RW Jr, Walters WD (1965) J Phys Chem 69: 1073

    Article  Google Scholar 

  48. Spellmeyer DC, Houk KN (1988) J ACS 110: 3412

    Article  CAS  Google Scholar 

  49. Van der Lugt WTA, Oosterhoft LJ (1969) J ACS 91: 6042

    Article  Google Scholar 

  50. Grimbert D, Segal G, Devaquet A (1975) J ACS 97: 6629

    Article  CAS  Google Scholar 

  51. Kirmse W, Rondan NG, Houk KN (1984) J ACS 106: 1871

    Article  Google Scholar 

  52. Dobier WE Jr, Korohiak H, Burton DJ, Heinze PL, Bailey AR, Shaw GS, Hansen SW (1987) J ACS 109: 219

    Article  Google Scholar 

  53. Houk KN, Spellmeyer DC, Jefford CW, Rimbault CG, Wang Y, Miller RD (1988) J Org Chem 53: 2127

    Article  Google Scholar 

  54. Pichko VA, Simkin BYa, Minkin VI (1987) Dokl Akad Nauk SSSR 292: 910

    CAS  Google Scholar 

  55. Pichko VA, Simkin BYa, Minkin VI (1989) THEOCHEM (in press)

    Google Scholar 

  56. Komornicki A, Mclver JW (1974) J ACS 96: 5798

    Article  CAS  Google Scholar 

  57. Lewis KE, Steiner H (1964) J Chem Soc:3080; Marvell EN, Caple G, Senatz B (1965) Tetrahedron Lett: 385

    Google Scholar 

  58. Simkin BY, Pichko VA, Minkin VI (1988) Zh Org Khim 24: 1569

    CAS  Google Scholar 

  59. Simkin BY, Makarov SP, Minkin VI (1982) Khim Heterocycl Soed N8: 1028

    Google Scholar 

  60. Simkin BY, Makarov SP, Minkin VI (1984) Khim Heterocycl Soed N6: 747

    Google Scholar 

  61. Dewar MJS, Kirschner S (1975) J ACS 97: 2931

    Article  CAS  Google Scholar 

  62. Frey HM, Stevens IDR (1969) Trans Farad Soc 61: 90

    Article  Google Scholar 

  63. Shevlin P, McKee ML (1988) J ACS 110: 1666

    Article  CAS  Google Scholar 

  64. Budzelaar PHM, Kraka E, Cremer D, Schleyer PR (1986) J ACS 108: 561

    Article  CAS  Google Scholar 

  65. Bouma WJ, Vincent MA, Radom L (1978Int J Quant Chem 14: 767

    Google Scholar 

  66. Rodwell WR, Bouma WJ, Radom L (1980) Int J Quant Chem 18: 107

    Article  CAS  Google Scholar 

  67. Rosenstock HM, Draxl K, Steiner BW, Herron JT (1977) J Phys Chem Ref Data (Suppl I ) 6: 1

    Google Scholar 

  68. Gajewski JJ, Conrad ND (1978) J ACS 100: 6268

    Article  CAS  Google Scholar 

  69. Roth WR, König J (1966) Liebigs Ann Chem 699: 24

    Article  CAS  Google Scholar 

  70. Hess BA, Schaad LJ (1983) J ACS 105: 7185

    Article  CAS  Google Scholar 

  71. Jensen F, Houk KN (1987) J ACS 109: 3139

    Article  CAS  Google Scholar 

  72. Dewar MJS, Healy EF, Ruiz JM (1988) J ACS 110: 266

    Article  Google Scholar 

  73. Dewar MJS, Merz KM, Stewart JJP (1985) J Chem Soc Chem Commun:166

    Google Scholar 

  74. Minyaev RM, Yudilevich IA, Minkin VI (1986) Zh Org Khim 22: 19

    CAS  Google Scholar 

  75. Kessler H, Feigel M (1982) Acc Chem Res 15: 2

    Article  CAS  Google Scholar 

  76. Anh NT, Flian M, Hoffmann R (1978) J ACS 100: 110

    Article  Google Scholar 

  77. Albright TA, Hofmann P, Hoffmann R, Lillya CP, Dobosh PA (1983) J ACS 105: 3396

    Article  CAS  Google Scholar 

  78. Minkin VI, Minyaev RM, Zhdanov YA (1987) Nonclassical structures of organic compounds. Mir, Moscow

    Google Scholar 

  79. Minkin VI, Minyaev RM (1982) Uspekhi Khim (Russ Chem Rev) 51: 586

    CAS  Google Scholar 

  80. Wade K (1975) Chem Brit 11: 177

    CAS  Google Scholar 

  81. Mingos DMP (1984) Acc Chem Res 17: 311

    Article  CAS  Google Scholar 

  82. Rudoph R (1976) Acc Chem Res 9: 446

    Article  Google Scholar 

  83. Teo BK (1985) Inorg Chem 24: 4209

    Article  CAS  Google Scholar 

  84. Childs RF (1982) Tetrahedron 38: 567

    Article  CAS  Google Scholar 

  85. Minkin VI, Minyaev RM (1979) Zh Org Khim 15: 1569

    CAS  Google Scholar 

  86. Minyaev RM, Minkin VI (1982) Zh Org Khim 18: 2009

    CAS  Google Scholar 

  87. Minkin VI, Minyaev RM, Orlova GV (1984) THEOCHEM 110: 241

    Article  Google Scholar 

  88. Ustynuk YA, (1982) Vestn MGU (ser 2 Khimia) 23: 605

    Google Scholar 

  89. Gerson F, Huber W, Müllen K (1978) Angew Chem 90: 216

    Article  CAS  Google Scholar 

  90. Salem L (1982) Electrons in chemical reactions: first principles. Wiley-Interscience, New York

    Google Scholar 

  91. Glukhovtsev MN, Simkin BYa, Minkin VI (1985) Uspekhi Khim (Russ Chem Rev) 54: 86

    CAS  Google Scholar 

  92. Bally T, Masamune S (1980) Tetrahedron 36: 343

    Article  CAS  Google Scholar 

  93. Kollmar H, Carrion F, Dewar MJS, Bingham RC (1981) J ACS 103: 5292

    Article  CAS  Google Scholar 

  94. Bock H, Roth B, Maier G (1984) Chem Ber 117: 172

    Article  CAS  Google Scholar 

  95. Bauld NL, Bellville DJ, Pabon R, Chelsky R, Green G (1983) J ACS 105: 2378

    Article  CAS  Google Scholar 

  96. Chanon M (1982) Bull Soc Chim France 2: 197

    Google Scholar 

  97. Bellville DJ, Chelsky R, Bauld NL (1982) J Comput Chem 3: 548

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minkin, V.I., Simkin, B.Y., Minyaev, R.M. (1990). Pericyclic Reactions. In: Quantum Chemistry of Organic Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75679-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75679-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75681-8

  • Online ISBN: 978-3-642-75679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics