Skip to main content
  • 1340 Accesses

Abstract

A hydrothermal fluid is defined as a hot (ca. 50 — >500 °C), aqueous solution (hydro = water; thermal = hot), containing Na, K, Ca, Cl as major components, as well as many other elements (e.g. Mg, B, S, Sr, CO2, H2S, NH4, Cu, Pb, Zn, Sn, Mo, Ag, Au etc.) as minor constituents (Skinner 1979). The terms fluid and solution are here used interchangeably, although fluid in the strict sense refers to a phase at a supercritical temperature in which a liquid can no longer exist. The pressure required to cause condensation at a given critical temperature is called the critical pressure. There are certain known conditions in nature where a hydrothermal solution is in fact a fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes H L (1979) Solubilities of ore minerals. In: Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 404–410

    Google Scholar 

  • Bonatti E (1975) Metallogenesis at oceanic spreading centres. Earth Annu Rev Planet Sci Lett, 3: 401–431

    Article  Google Scholar 

  • Bowen R (1988) Isotopes in the earth sciences. Elsevier, London, New York, 647 pp

    Book  Google Scholar 

  • Brimhall G H, Crerar D A (1987) Ore fluids: magmatic to supergene. In: Carmichael I S E, Eugster H P (eds) Thermodynamics and modelling of geological materials: minerals; fluids and melts. Reviews in mineralogy, vol 17. Min Soc Am, pp 235–321

    Google Scholar 

  • Cole D R, Drummond S E (1986) The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits. J Geochem Explor 25: 45–79

    Article  Google Scholar 

  • Crerar D A, Wood S, Brantley S, Bocarsly A (1985) Chemical controls on solubility of ore forming minerals in hydrothermal solutions. Can Mineral 23: 333–351

    Google Scholar 

  • Doe R B, Delevaux M A (1972) Source of lead in Southwest Missouri galena ores. Econ Geol 67: 409–425

    Article  Google Scholar 

  • Ellis A J, Mahon W A J (1977) Chemistry and geothermal systems. Academic Press, New York London, 392 pp

    Google Scholar 

  • Evans A M (1987) An Introduction to ore geology, 2nd edn. Blackwell, Oxford, 358 pp

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. John Wiley and Sons, New York, 589 pp

    Google Scholar 

  • Feiss P G (1978) Magmatic sources of copper in porphyry copper deposits. Econ Geol 73: 397–404

    Article  Google Scholar 

  • Greybeal F J (1973) Copper, manganese and zinc in coexisting mafic minerals from Laramide intrusive rocks in Arizona. Econ Geol 68: 785–798

    Article  Google Scholar 

  • Guilbert J M, Park C F (1985) The geology of ore deposits. Freeman, San Francisco, New York, 985 pp

    Google Scholar 

  • Hanor J S (1979) The sedimentary genesis of hydrothermal fluids. In: Barnes H L (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 137–168

    Google Scholar 

  • Henley R W, Norris R J, Paterson C (1976) Multistage ore genesis in the New Zealand geosyncline. A history of post-metamorphic lode emplacement. Mineral Depos 11: 180–196

    Google Scholar 

  • Henley R W, Truesdell A H, Barton P B, Whitney J A (1984) Fluid-mineral equilibria in hydrothermal systems. Rev Econ Geol 1. Soc Econ Geol, 267 pp

    Google Scholar 

  • Hollister L S, Crawford M L (eds) (1981) Short course in fluid inclusions: application to petrology. Mineral Assoc Can, 304 pp

    Google Scholar 

  • Ilton E S (1990) Partitioning of base metals between silicates, oxides and a chloride-rich hydrothermal fluid. Part II. Some aspects of base metal fractionation during isothermal metasomatism. Geochem Soc Spec Publ 2: 171–178

    Google Scholar 

  • Ilton E S, Eugster H P (1990) Partitioning of base metals between silicates, oxides and a chloride-rich hydrothermal fluid. Part I. Evaluation of data derived from experimental and natural assemblages. Geochem Soc Spec Publ 2: 157–170

    Google Scholar 

  • Ivanova G F (1969) Conditions of concentration of tungsten during greisenisation. Geokhimya 1: 22–36. (in Russian)

    Google Scholar 

  • Koslovsky YEA (1984) The world’s deepest well. Sci Am 251: 106–113

    Google Scholar 

  • Krauskopf K B (1979) Introduction to geochemistry. McGraw-Hill Kogakushu, 617 pp

    Google Scholar 

  • Large R, Huston D, McGoldrich P, McArthur G, Ruxton P (1988) Gold distritmtion and genesis in Paleozoic volcanogenic massive sulphide systems. In: Bicentenn Gold 88. Geol Soc Aust Abst Ser 22: 121–12

    Google Scholar 

  • Masterton W L, Slowinski E J, Stanitski C L (1981) Chemical principles. Holt-Saunders international edition, 5th edn. Saunders, Philadelphia, 641 pp

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley J W, Taylor H P, O’Neil J R (eds.) Stable isotopes in high temperature geological processes. Reviews in mineralogy, vol 16. Min Soc Am, pp 491–559

    Google Scholar 

  • Roedder E (1979) Fluid inclusions as samples of ore fluids. In: Barnes H L (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 684–731

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in mineralogy, vol 12. Min Soc Am, 644 pp

    Google Scholar 

  • Seward T M (1979) Hydrothermal transport and deposition of gold. In: Glover J E, Groves DI (eds) Gold mineralisation. Univ W Aust Ext Serv 3: 45–55

    Google Scholar 

  • Shepherd T, Rankin A H, Alderton D H M (1985) A practical guide to fluid inclusion studies. Chapman & Hall, New York, 239 pp

    Google Scholar 

  • Sheppard S M F (1986) Characterization and isotopic variations in natural waters. Reviews in mineralogy, vol 16. Min Soc Am, pp 165–183

    Google Scholar 

  • Skinner B J (1979) The many origins of hydrothermal mineral deposits. In: Barnes H L (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 3–21

    Google Scholar 

  • Spencer R J, I-Ming Chou (eds.) (1990) Fluid-mineral interactions: A tribute to H.P. Eugster. Geochem Soc Spec Publ 2, 432 pp

    Google Scholar 

  • Smirnov I (1976) Geology of mineral deposits. MIR, Moscow, 520 pp

    Google Scholar 

  • Taylor H P (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes H L (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 236–277

    Google Scholar 

  • Valley J L, Taylor H P, O’Neil J R (eds) (1986) Stable isotopes in high temperature geological processes. Reviews in mineralogy, vol 16. Min Soc Am, 570 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirajno, F. (1992). Hydrothermal Solutions. In: Hydrothermal Mineral Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75671-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75671-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75673-3

  • Online ISBN: 978-3-642-75671-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics