Vicariance Biogeography Using North Atlantic Chalinidae (Demospongiae)

  • W. H. de Weerdt


The present chapter shows that it is possible to apply the methods of vicariance biogeography to North Atlantic shallow-water Chalinidae (Haplosclerida, Demospongiae). Sponges are known to be difficult tools for biogeographic studies. This is primarily due to their complicated taxonomy, which in turn may be ascribed to their very old geological age, and the apparent evolutionary trend towards simplicity (Vacelet 1985). This applies especially to chalinid species, which are of a discouraging simplicity for the taxonomist. The reason why this group has been selected for biogeographical analyses following the strict “rules” of vicariance biogeography is simply the fact that I am most familiar with these sponges, albeit predominantly with the North Atlantic species. Through taxonomic studies based on type material and freshly collected specimens, and by scrutinizing all the references in the literature, it appeared possible to establish the North Atlantic distribution of the chalinid species with a sufficiently high degree of reliability (de Weerdt 1986, 1987, 1989). The next steps towards analyses of the historical relationships of the North Atlantic endemic areas based on analyses of the phylogenetic relationships of the chalinid species and their distribution patterns appeared to be well justified and a novelty (Zandee pers. commun.). The fully elaborated analyses will be presented in a forthcoming paper (de Weerdt 1989). Here, an example of the procedure is given, based on reduced but still real data. Vicariance biogeography (also called historical biogeography, cladistic biogeography or area cladistics) combines the phylogenetic relationships of organisms with their distributional patterns, in order to infer the historical relationships of areas of endemism. It is the direct result of the principles of phylogenetic systematics as formulated by Hennig (1966), and the recognition of congruent, but disjunct distribution patterns in several unrelated organisms by authors (“generalized tracks”; cf. Rosen 1975; Wiley 1981, and references in Humphries and Parenti 1986).


General Area Historical Biogeography Historical Relationship Transformation Series Vicariance Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball IR (1975) Nature and formulation of biogeographical hypotheses. Syst Zool 24 (4):407–430CrossRefGoogle Scholar
  2. Boury-Esnault N, Lopes T (1985) Les Démosponges littorales de l’Archipel des Açores. Ann Inst Océanogr 61 (2): 149–225Google Scholar
  3. Briggs JC (1974) Marine Zoogeography, 1. Marine faunal geographical distributions. McGraw-Hill, New York, pp 461Google Scholar
  4. Burton M (1932) Sponges. DISCOVERY Rep 6:327–392Google Scholar
  5. Burton M (1956) The sponges of West Africa. Atlantide Rep 4:111–147Google Scholar
  6. Chevalier JP (1961) Recherches sur les Madréporaires et les formations récifals miocènes de la Méditerranée occidentale. Mem Soc Geol Fr NS 93:1–562Google Scholar
  7. Desqueyroux R, Moyano H (1987) Zoogeografia de Demospongias Chilenas. Bol Soc Biol Conception Chile 58:39–66Google Scholar
  8. de Weerdt WH (1986) A systematic revision of the north-eastern Atlantic shallow-water Haplosclerida (Porifera, Demospongiae), part II: Chalinidae. Beaufortia 36 (6):81–165Google Scholar
  9. de Weerdt WH (1987) The shallow-water Haplosclerida (Porifera, Demospongiae) of the north east Atlantic Ocean: taxonomy, phylogeny and historical biogeography PhD thesis, pp 243Google Scholar
  10. de Weerdt WH (1989) Phylogeny and vicariance biogeography of North Atlantic Chalinidae (Haplosclerida, Demospongiae). Beaufortia 39 (3):55–95Google Scholar
  11. de Weerdt WH, van Soest RWM (1986) Marine shallow-water Haplosclerida (Porifera) from the south-eastern part of the North Atlantic OceanGoogle Scholar
  12. Dillon WP, Sougy JMA(1974) Geology of West Africa and Canary and Cape Verde Islands. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 2. Plenum, New York, pp 598Google Scholar
  13. Ekman S (1953) Zoogeography of the sea. Sidgwick & Jackson, London, pp 417Google Scholar
  14. Ellis WN (1986) TreeTools, a set of programs for the construction of Wagner Networks and Trees for the Macintosh 512 computer (distributed by the author)Google Scholar
  15. Esteban M (1979) [1980] Significance of the Upper Miocene coral reefs of the western Mediterranean. Palaeogeog Palaeoclimatol Palaeoecol 29:169–188CrossRefGoogle Scholar
  16. Esteban M, Calvet F, Dabrio CJ, Baron A, Giner J, Pomar L, Salas R, Permanyer A (1978) Aberrant features of the Messianian coral reefs, Spain. Acta Geol Hisp 1:20–22Google Scholar
  17. Farris JS (1977) Phylogenetic analysis under Dollo’s Law. Syst Zool 26:77–88CrossRefGoogle Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Griessinger J-M (1971) Étude des Réniérides de Méditerranée (Démosponges, Haplosclérides). Bull Mus Natl Hist Nat (3) 3 (Zool 3): 97–182Google Scholar
  20. Hechtel GJ (1976) Zoogeography of Brazilian marine Demospongiae. In: Harrison FW, Cowden RR (eds) Aspects of sponge biology. Academic Press, New York, pp 354Google Scholar
  21. Hennig W (1966) Phylogenetic systematics. Univ Illinois Press, Urbana, pp 163Google Scholar
  22. Humphries CJ, Parenti LR (1986) Cladistic biogeography. Clarendon Oxford, pp 98Google Scholar
  23. Kauffman EG (1973) Cretaceous Bivalvia. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier Scientific, Amsterdam, pp 531Google Scholar
  24. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  25. Maddison WP, Donoghue M J, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103CrossRefGoogle Scholar
  26. Maldonado A (1985) Evolution of the Mediterranean basins and a detailed reconstruction of the Cenozoic paleoceanography. In: Margalef R (ed) Key environments; western Mediterranean. Pergamon, Oxford, pp 17–59Google Scholar
  27. Mickevich MF (1982) Transformation series analysis. Syst Zool 31 (4):461–478CrossRefGoogle Scholar
  28. Nelson G (1984) Cladistics and biogeography. In: Duncan T, Stuessy TF (eds) Cladistics: perspectives on the reconstruction of evolutionary history. Columbia University Press, New York, pp 312Google Scholar
  29. Nelson G, Platnick NI (1981) Systematics and biogeography; cladistics and vicariance. Columbia University Press, New York, pp 567Google Scholar
  30. Page RDM (1988) Quantitative cladistic biogeography: constructing and comparing area clado-grams. Syst Zool 37 (3):254–270CrossRefGoogle Scholar
  31. Pielou EC (1979) Biogeography. John Wiley, New York, pp 351Google Scholar
  32. Pimentel RA, Riggins R (1978) The nature of cladistic data. Cladistics 3 (3):201–209CrossRefGoogle Scholar
  33. Platnick NI, Nelson G (1978) A method of analysis for historical biogeography. Syst Zool 27:1–16CrossRefGoogle Scholar
  34. Ridley WI, Watkins ND, MacFarlane DJ (1974) The Oceanic Islands: Azores. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 2. Plenum, New York, pp 598Google Scholar
  35. Rosen DE (1975) A vicariance model of Caribbean biogeography. Syst Zool 24 (4):431–464CrossRefGoogle Scholar
  36. Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Syst Zool 27:159–188CrossRefGoogle Scholar
  37. Ross HH (1974) Biological systematics. Addison-Wesley Reading, Massachusetts, pp 345Google Scholar
  38. Saether OA (1983) The canalized evolutionary potential: inconsistencies in phylogenetic reasoning. Syst Zool 32 (4):343–359CrossRefGoogle Scholar
  39. van Lent F, de Weerdt WH (1987) The haplosclerid sponge fauna (Porifera, Demospongiae) from Banyuls-sur-mer (Mediterranean) with the description of a new species. In: Vacelet J, Boury-Esnault N (eds) Taxonomy of Porifera from the north east Atlantic and Mediterranean Sea. NATO-ASI-Serie G: Ecol Sci, vol 13. Springer, Berlin Heidelberg New York Tokyo, pp 332Google Scholar
  40. van Soest RWM (1980) Marine sponges from Curaçao and other Caribbean localities. Part III. Haplosclerida. Stud Fauna Curaçao Other Caribb Isl 62 (104): 1–174Google Scholar
  41. Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. The Systematic Assoc, Special vol 28. Clarendon, Oxford, pp 1–13Google Scholar
  42. Watrous LE, Wheeler QD (1981) The out-group comparison method of character analysis. Syst Zool 30 (1):1–11CrossRefGoogle Scholar
  43. Wiley EO (1981) Phylogenetics: the theory and practice of phylogenetic systematics. John Wiley, New York, pp 439Google Scholar
  44. Wiley EO (1987a) Methods in vicariance biogeography. In: Hovenkamp P, Gittenberger E, Hennipman E, de Jong R, Roos MC, Sluys R, Zandee M (eds) Systematics and evolution: a matter of diversity. Utrecht University, pp 341Google Scholar
  45. Wiley EO (1987b) Approaches to outgroup comparison. In: Hovenkamp P, Gittenberger E, Hennipman E, de Jong R, Roos MC, Sluys R, Sandee M (eds) Systematics and evolution: a matter of diversity. Utrecht University, pp 341Google Scholar
  46. Wiley EO (1988) Vicariance biogeography. Annu Rev Ecol Syst 19:513–542CrossRefGoogle Scholar
  47. Zandee M (1987) A computing environment for cladistic analysis. Preliminaries of a user manual for CAFCA/PC. In: Hovenkamp P, Gittenberger E, Hennipman E, de Jong R, Roos MC, Sluys R, Zandee M (eds) Systematics and evolution: a matter of diversity. Utrecht University, pp 341Google Scholar
  48. Zandee M, Roos MC (1987) Component-compatibility in historical biogeography. Cladistics 3 (4):305–332Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • W. H. de Weerdt

There are no affiliations available

Personalised recommendations