Skip to main content

Phytoplankton: Directional Succession and Forced Cycles

  • Chapter
The Mosaic-Cycle Concept of Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 85))

Abstract

Plankton communities undergo conspicuous temporal change in species composition. Such change occurs over long-term scales in water bodies undergoing environmental change (e.g., eutrophication) and within individual years. The latter has been termed “seasonal succession” by plankton ecologists. Despite its cyclic character, plankton succession has more similarities with succession than with seasonal apsectation in terrestrial vegetation: Numerous generations are involved; the abundance of individual populations and, thus, the species composition of the community undergo drastic change; community composition passes several quite distinct stages; rescaled to the generation time of the organism and the duration time of stages several months of plankton succession are analogous to several centuries of forest succession.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bray JR, Curtis TJ (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27: 325–349

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35: 634–639

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199: 1304–1310

    Article  Google Scholar 

  • Gaedeke A, Sommer U (1986) The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 25–28

    Article  Google Scholar 

  • Geller W, Mueller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivities. Oecologia 49: 316–321

    Article  Google Scholar 

  • Gliwicz ZM (1975) Effect of Zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh Int Verein Limnol 19: 1480–1497

    Google Scholar 

  • Gliwicz ZM (1977) Food-size selection and seasonal succession of filter-feeding Zooplankton in a eutrophic lake. Ekol Polsk 25: 179–225

    Google Scholar 

  • Harris GP (1986) Phytoplankton ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95: 137–147

    Article  Google Scholar 

  • Lampert W, Taylor BE (1985) Zooplankton grazing in a eutrophic lake: implications of diel vertical migration. Ecology 66: 68–82

    Article  Google Scholar 

  • Margalef R (1977) Ecologia. Omega, Barcelona

    Google Scholar 

  • McCauley E, Murdoch WW (1987) Cyclic and stable populations: plankton as paradigm. Am Nat 129: 97–121

    Article  Google Scholar 

  • McQueen DJ, Post JR (1988) Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159: 227–296

    Article  Google Scholar 

  • Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature (Lond) 244: 179–180

    Article  Google Scholar 

  • Porter KG (1977) The plant-animal interface in freshwater ecosystems. Am Sci 65: 159–170

    Google Scholar 

  • Remmert H (1985) Was geschieht im Klimax-Stadium? Naturwiss 72: 505–512

    Article  Google Scholar 

  • Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct Ecol 3: 141–159

    Google Scholar 

  • Reynolds CS (1984) Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwater Biol 14: 111–142

    Article  Google Scholar 

  • Reynolds CS (1988) Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Sandgren CD (ed) Growth and survival strategies of freshwater phytoplankton. Cambridge Univ Press, Cambridge, pp 388–433

    Google Scholar 

  • Reynolds CS (1989) Physical determinants of phytoplankton succession. In: Sommer U (ed) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York Tokyo, pp 9–56

    Google Scholar 

  • Reynolds CS, Wiseman SW (1982) Sinking losses of phytoplankton in closed limnetic systems. J Plankton Res 4: 489–522

    Article  Google Scholar 

  • Reynolds CS, Thompson JM, Ferguson AJD, Wiseman SW (1982) Loss processes in the population dynamics of phytoplankton maintained in closed systems. J Plankton Res 4: 561–600

    Article  Google Scholar 

  • Reynolds CS, Wiseman SW, Godfrey BM, Butterwick C (1983) Some effects of artificial mixing on the dynamics of phytoplankton in large limnetic enclosures. J Plankton Res 5: 203–234

    Article  Google Scholar 

  • Sommer U (1983) Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch Hydrobiol 96: 399–416

    Google Scholar 

  • Sommer U (1984) Sedimentation of principal phytoplankton species in Lake Constance. J Plankton Res 6: 1–15

    Article  Google Scholar 

  • Sommer U (1985) Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol Oceanogr 30: 335–346

    Article  CAS  Google Scholar 

  • Sommer U (1986) The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes. Hydrobiologia 138: 1–7

    Article  Google Scholar 

  • Sommer U (1987) Factors controlling the seasonal variation in phytoplankton species composition. A case study for a nutrient rich, deep lake. Progr Phycol Res 5: 123–178

    CAS  Google Scholar 

  • Sommer U (1988) Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnol Oceanogr 33: 1037–1054

    Article  Google Scholar 

  • Sommer U (1989) The role of competition for resources in phytoplankton succession. In: Sommer U (ed) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York Tokyo, pp 57–106

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471

    Google Scholar 

  • Sterner RW (1989) The role of grazers in phytoplankton succession. In: Sommer U (ed) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York Tokyo, pp 107–170

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ Press, Princeton

    Google Scholar 

  • Tilman D, Sterner RW (1984) Invasions of equilibria: test of resource competition using two species of algae. Oecologia 61: 197–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (1991). Phytoplankton: Directional Succession and Forced Cycles. In: Remmert, H. (eds) The Mosaic-Cycle Concept of Ecosystems. Ecological Studies, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75650-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75650-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75652-8

  • Online ISBN: 978-3-642-75650-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics